Chemical Reactions

- **Chemical reaction**: process in which chemical species react to form new substances
- · Reactants change into products
- Ability to meet criteria for successful reaction determines rate of reaction

Reaction Rate

Reaction Kinetics

AP Chemistry 30

- **Rate**: measure of how frequently particles are changing from reactants to products
- Measured as decrease in concentration of reactants per unit time or an increase in concentration of products per unit time.
- Units: mol/L·s, g/s, L/s, etc.

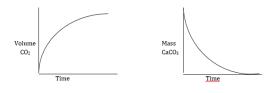
Reaction Rate

 $\text{CaCO}_3(s) + 2\text{HCl (aq)} \rightarrow \text{CaCl}_2(\text{aq}) + \text{H}_2\text{O}(\text{I}) + \text{CO}_2(\text{g})$

• Rate can be determined by:

- Volume change (since a gas is produced):

$$rate = \frac{\Delta V}{\Delta V}$$


- Mass change (as solid CaCO₃ reacts):

$$rate = \frac{\Delta m}{t}$$

- Concentration change (of HCl or CaCl₂): $rate = \frac{\Delta[HCl]}{t}$ or $rate = \frac{\Delta[CaCl_2]}{t}$

Sample Reaction Rates

• Each of these changes could be graphed, and would look like this:

Reaction Rates

- All reactions begin rapidly, then slow down, due to availability of reactant particles
- To determine the **instantaneous rate**: find slope of tangent on graph
- To determine **average rate**: find slope between two points

Review: Particle Theory

- All matter is made of particles (atoms, molecules and ions).
- Particles have empty space between them and are constantly in motion.
- As energy is added to particles, they move faster and spread further apart.

Collision Theory

What needs to happen for reactant particles to start reacting? This is explained by collision theory. Reactant particles need:

- To collide (hit each other)
- To be in the correct <u>orientation</u> (collide in the correct way)
- To have enough energy for the bonds to break (kinetic energy – need to be going <u>fast</u> enough)

Collision Theory

What happens when reactant particles successfully collide?

- Particles bond together in very unstable (high potential energy) transition state called the <u>activated complex</u> (AC)
- The particles in the AC are very weakly bonded, which makes it extremely easy to break apart

Collision Theory

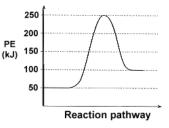
How are products formed?

- AC breaks apart into either products or reactants – each option is equally likely to occur
- Considered a transition state cannot stay in this form (too unstable)

Collision Theory Diagram

$$A_2 + B_2 \rightarrow 2 AB$$

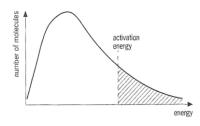
Activation Energy


- Activation energy: minimum amount of energy needed for reactant particles to form the activated complex
- AC is a high energy state absorbs free energy from system to form
- Reactions with high AE will have fewer successful collisions – very slow or very few products

Energy Diagrams

• Energy diagrams can be used to model the energy level in the system for a chemical process.

Example 1: Energy Diagram



Example 2: Energy Diagram

Sketch an energy diagram in which the reactants start at 40 kJ, Δ H is -20 kJ and the activation energy is 60 kJ.

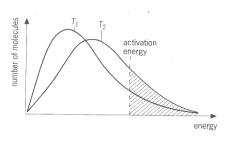
Maxwell-Boltzmann Distribution Curve

 Note that energy value <u>never</u> touches yaxis; molecules cannot have zero energy!

Maxwell-Boltzmann Distribution Curve

- Shows **number of particles** in a system based on their **kinetic energy**
- Temperature is an <u>average</u> of the kinetic energy of the particles, some lower and some higher than average
- When temperature is changed, so is shape of graph

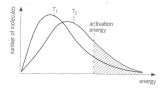
Rate-Determining Factors


<u>Temperature</u>

Higher temperatures increase reaction rate.

- Increases kinetic energy of the particles in the system – more particles have enough energy to react
- More molecular motion = more collisions

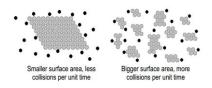
Rate-Determining Factors


Temperature

Example: Rate-Determining Factors

What would happen to the reaction rate if the temperature was:

- Increased to a higher temperature than T₂?
- Decreased to a lower temperature than T₁?



Rate-Determining Factors

Surface Area

More surface area increases reaction rate.

 More access between reactant particles = more collisions

Rate-Determining Factors

Concentration

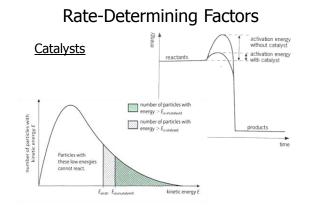
Higher concentration increases reaction rate

More reactant particles = more collisions

Rate-Determining Factors

Concentration

Rate-Determining Factors


<u>Catalysts</u>

- **Catalyst**: a substance that increases the rate of a reaction without being consumed by the reaction
- **Inhibitor:** opposite of a catalyst; slows down reaction rate without being consumed

Rate-Determining Factors

Catalysts

• Lowers the activation energy of the reaction; more reactant molecules have enough energy to react

Rate-Determining Factors

In General

- Anything that increases the number of collisions will increase the rate of the reaction
- By increasing the number of collisions between reactant molecules, there is more chance of having successful collisions that result in the formation of the products

Rate Laws

- **Rate law**: mathematical expression that relates concentration of reactants to rate
- · General form:

rate = $k[A]^{m}[B]^{n}[C]^{p}...$

where:

k is a specific rate constant

[A], [B]... are molar concentrations of reactants m, n, p... are exponents, usually positive integers

Rate Laws

- Rate constant depends on temperature and surface area of reactants, but will not change with concentration
- Rate law must be determined experimentally

Reaction Order

- Reaction order of a reactant is its exponent in rate equation describes how rate is affected by that reactant.
- Overall reaction order is sum of all exponents in the rate equation
- For the general reaction rate:
 Rate = k[A]^m[B]ⁿ,

the rate order is m + n.

Reaction Order

- **Zero order**: reactant concentration has no effect on rate, rate = k
- First order: rate is directly proportional to reactant concentration, rate = k[A]
 Example: nuclear decay
- **Second order**: rate is quadrupled with [reactant] is doubled, rate = k[A]² or =k[A][B]

Types of Rate Laws

- **Differential rate law**: determined using <u>initial</u> rate and <u>initial</u> reactant concentration data (before stuff gets "messy")
- **Integrated rate law**: determined from concentration and time data, using graphical methods

Example: Differential Rate Law

Use the data to determine the exponents m and n in the general reaction rate law. What order is the reaction with respect to A, B and overall?

Initial Rates for aA + bB \rightarrow products				
Trial	Initial [A] (mol/L)	Initial [B] (mol/L)	Initial Rate (mol/L·s)	
1	0.100	0.100	2.00 × 10 ⁻³	
2	0.200	0.100	4.00 × 10 ⁻³	
3	0.200	0.200	16.0 × 10 ⁻³	

Integrated Rate Laws

- Work with data to get a linear concentration-time graph
- Three options:

Graph	Order	Formula
[A] vs t	Zero	$[A] = -kt + [A_o]$
ln[A] vs t	First	$ln[A] = -kt + ln[A_o]$
1/[A]	Second	$1/[A] = kt + 1/[A_o]$

Example: Integrated Rate Laws

The decomposition of $N_2 O_5$ in the gas phase was studied at constant temperature.

 $2 \text{ N}_2\text{O}_5(g) \rightarrow 4 \text{ NO}_2(g) + \text{O}_2(g)$

Time (s)	[N ₂ O ₅]
0	0.1000
50	0.0707
100	0.0500
200	0.0250
300	0.0125
400	0.00625

Example, continued...

- a. Determine the rate law and calculate the value of k.
- b. Determine $[N_2O_5]$ at 250 s. Does this make sense?
- c. Determine $[N_2O_5]$ at 600 s. Does this make sense?

Thinking Activity

Consider the following reaction: $2\ C_2H_2\,+\,5\ O_2\rightarrow 4\ CO_2\,+\,2\ H_2O$

How Reactions Really Happen

- More complex reactions actually undergo a series of simple reactions, simultaneously
- Different particles that are <u>not</u> products or reactants are in existence for a brief period of time – **reaction intermediates**
- "Best guesses" determined experimentally and must agree stoichiometrically and with rate law

Elementary Steps

• Elementary step: simple reaction occurring for one or two particles

Elementary Step	Molecularity	Rate Expression
$A \to products$	Unimolecular	rate = k[A]
$A + B \to products$	Bimolecular	rate = k[A][B]
$A + A \to products$	Bimolecular	rate = $k[A]^2$
$2A + B \rightarrow products$	Termolecular (rare)	rate = $k[A]^2[B]$

Elementary Steps

- For an elementary step, the rate law can be written from its molecularity – not true for overall reaction
- i.e. coefficients in reaction translate to exponents in rate law

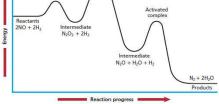
Reaction Mechanisms

- Each reaction step has a different reaction rate, depending on the complexity of the molecules and how much energy they have
- Slowest step is rate-determining step, because it sets the pace of the whole reaction

Example: Reaction Mechanism

For this reaction:

2 H₂ (g) + 2 NO (g) \rightarrow N₂ (g) + 2 H₂O (g) One possible mechanism is:


2 NO (g)
$$\rightarrow$$
 N₂O₂ (g)

$$N_2O_2(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$$

$$N_2O(g) + H_2(g) \rightarrow N_2(g) + H_2O(g)$$

- a. Determine molecularity and rate law for each step.
- b. Show how the sum of these steps yield the net reaction.

Energy Diagram for Reaction Mechanism

Rate-Determining Step

- Dictates overall rate of reaction
- Rate law of slowest step is identical to experimental rate law

Example: Rate-Determining Step

For this reaction:

 $\begin{array}{l} 2 \ \text{NO}_2 \ (\text{g}) + \text{F}_2 \ (\text{g}) \rightarrow 2 \ \text{NO}_2 \text{F} \ (\text{g}) \end{array}$ The experimentally determined rate law is: $\begin{array}{c} \text{rate} = \ \text{k}[\text{NO}_2][\text{F}_2] \end{array}$ A suggested mechanism is: $\begin{array}{c} \text{NO}_2 + \text{F}_2 \rightarrow \text{NO}_2 \text{F} + \text{F} \quad \textit{slow} \end{array}$ $\begin{array}{c} \text{F} + \ \text{NO}_2 \rightarrow \text{NO}_2 \text{F} \quad \textit{fast} \end{array}$ Is this a valid mechanism?

Catalysts and Intermediates

- Catalysts are used early in reaction mechanism (reactant) and regenerate (product) in a later step
- Intermediates are produced early in the reaction (product) and are used up (reactant) in a subsequent step
- Both will **not** appear in the net reaction

Example: Catalysts/Intermediates

Determine all intermediates, catalysts and the net reaction:

Step 1: $A_2(g) \rightarrow 2 A(g)$ Step 2: $2 A(g) + 2 B (g) \rightarrow 2 AB(g)$ Step 3: $2 AB(g) + C_2(g) \rightarrow 2 ABC(g)$ Step 4: $2 ABC(g) \rightarrow 2 AC(g) + 2 B(g)$