

Proton Neutron Nucleus Electron Cloud

The Atom

- Protons: in the nucleus, positive charge, heavy
- Neutrons: in the nucleus, no charge, heavy
- Electrons: orbiting around the nucleus, negative charge, light

Periodic Table

- Periods: horizontal rows
 - 7 periods
- Groups (families): vertical columns
 - All elements have similar properties
 - 18 groups

Classes of Elements

- Metals left side of periodic table
- Non-metals right side of periodic table
- Semi-metals (metalloids) along the staircase (B, Si, Ge, As, Sb, Te, Po, At)

Periodic Table Information

Atomic Number

- Number of protons in the nucleus
- Also, the number of electrons for an atom
- Determines the order of elements on the periodic table

Atomic Mass

- Mass of one atom of an element
- Measured in atomic mass units (amu)
- Atomic mass = # protons + # neutrons

Chemical Symbols

VERY IMPORTANT! DON'T GUESS! LOOK IT UP!

USE CAPITALS AND LOWERCASE PROPERLY

Example: Atoms

For LEAD:

- What is the chemical symbol?
- What is the atomic number?
- What is the atomic mass?
- How many protons, electrons and neutrons?

Bohr Model of the Atom

- Electrons orbit the nucleus in "shells"
- Each shell has a specific energy level, and can fit a maximum number of electrons:

Shell	1	2	3	4
Electrons	2	8	8	18

Bohr-Rutherford Models

Examples: Bohr-Rutherford

Mg F

K P

Valence Electrons

- Valence shell is outside shell
- Valence electrons electrons in outer shell
- Core electrons electrons in inner shells
- Example: aluminum has <u>three</u> valence electrons and <u>ten</u> core electrons

Valence Electrons

- Can find out based on <u>group</u> last number of group
- e.g. group 1 has 1 valence electron, group 13 has 3, group 18 has 8
- THIS IS REALLY IMPORTANT TO REMEMBER

Example: Valence Electrons

How many valence electrons in...

As Ba Rn K
Mg Ga Cl I
O P Pb H

Lewis Diagrams

- Show chemical symbol and valence electrons <u>only</u>, no circles
- Dots on each side <u>unpaired</u>, then start pairing

Examples: Lewis Diagrams

Draw a Lewis diagram for: potassium rubidium

selenium bromine

radon chlorine

Question...

Noble gases (group 18) are stable and unreactive. Why?

What does oxygen have to do to be stable?

Ions

- Only electrons can be added or removed to an atom (protons and neutrons are stuck in place)
- Atoms are stable ("happy") when they have a full valence shell, either by gaining or losing electrons

Example 1: Ions

For each atom, either <u>cross out</u> or <u>add</u> electrons to make it stable.

Mg[·]

٠۶٠

Η·

Question...

What happens to the atom when it gains or loses electrons?

How is it different for gaining/losing?

Ions

RULES

- Metals lose electrons and become positive **CATIONS**
- Non-metals gain electrons and become negative – ANIONS
- Charge = protons electrons

Example 2: Ions

What	's the charge fo	or each if it is	an ion?
Mg	0	Cl	Р
K	Li	Al	F
Ca	S	N	Н

Ionic Notation

X Charge

Example 3: Ions

Write each in ionic notation.

Mg	0	Cl	Р
K	Li	Al	F
Ca	S	N	Н

Naming Ions

- Metals keep their name + ion
 - e.g. sodium ion, magnesium ion, aluminum ion
- Non-metals get the ending "-ide" + ion
 - "-ine" ending becomes "-ide"
 - selenium becomes selenide
 - All others take first syllable + "-ide"

Example 4: Ions

Name these ions.

H ⁺	Mg ²⁺	N ³⁻	S ²⁻	F-
O ²⁻	Se ²⁻	K ⁺	Sr ²⁺	Cl-
Br	Na+	P ³⁻	I-	Ba ²⁻

Ionic Compounds

- Contain a metal and a non-metal
- Formed when cation (+) and anion (-) are attracted to form a **compound**
- Electrons from metal are transferred (given) to non-metal
- e.g. sodium chloride

Naming Ionic Compounds

- Metal ion name + non-metal ion name
- \blacksquare e.g. SrF_2 is strontium fluoride

Example: Naming Ionic Compounds

Write the name for each ionic compound:

K₂S

AIP

CaCl₂

NaH

MgO

RbI₂

Ionic Formulas

- Metal first, then non-metal
- Number of each ion is a **subscript**

 Al_2O_3 Aluminum oxide

Question...

How do you know how many of each ion there is?

Ionic Formulas

■ Total charge must equal zero!

electrons lost by metals

=

electrons gained by non-metals

Example 1: Ionic Formulas

For each pair of ions, <u>build the compound</u>, draw it, then write the formula:

K+ and I-

Mg2+ and Cl-

Ca2+ and N3-

Example 2: Ionic Formulas

For each name, determine the ion charges, <u>build the compound</u>, draw it, then write the formula:

strontium oxide

magnesium phosphide

calcium sulfide

Ionic Formula Trick

Important: reduce! (Ca²⁺ and O²⁻ is CaO, **not** Ca_2O_2)

Steps for Ionic Formulas from Names

- 1. Determine ion charges
- 2. Write each ion in ionic notation
- 3. "Draw" compound OR cross charges
- 4. Write formula with symbols and subscripts

Example: Ionic Formulas

Write the formula for potassium nitride.

Multivalent Ions

- **Transition metals**: elements in groups 3-12
- Some have only one charge, some have more than one
- **Multivalent**: ions that can have more than one charge
- e.g. iron can be 2+ or 3+

Example: Multivalent Ions

Is this multivalent? List the charge(s). copper zinc gold

chromium silver manganese

Naming Multivalent Ions

■ Metal name + charge in **ROMAN NUMERALS** + ion

■ e.g. iron(II) ion, copper(I) ion

 MULTIVALENT IONS MUST HAVE A CHARGE 1 I 2 II 3 III 4 IV 5 V 6 VI 7 VII

^{*}Note that not all possible charges are listed on ion PT

Example: Multivalent Ions

Write the name for each:

 Pd^{2+} Mn^{7+} Cr^{6+}

 Sn^{4+} Au^{3+} Cu^{+}

Example: Ionic Formulas with Multivalent Ions

Write the formula for each: copper(II) fluoride

lead(IV) oxide

nickel(III) nitride

Question...

What is the charge of each ion in CoO?

Determining Charge

- 1. Determine charge of anion (non-metal) only one possibility
- 2. Multiply charge by number of anions to get total <u>negative charge</u>
- 3. Multiply by -1 to get total positive charge
- 4. Divide total positive charge by number of cations (metal)

Example 1: Determining Charge

CrO

Example 2: Determining Charge

FeCl₂

Example 3: Determining Charge

 Ti_2S_3

Example: Naming Multivalent Compounds

Write the name for each compound. <u>Don't forget Roman numerals for charge!</u>
PdO MnN SnF₂

 Cu_2S Au_3P Mn_2O_7

Example: Mixed Naming

Write the name for each compound.

CuI ZnO Fe_3N_2

AgBr CaS SnO₂

Polyatomic Ions

- Group of atoms bonded together that has an overall charge
- poly = more than one
- e.g. hydroxide ion is OH-
- Name as written on ion PT

Example: Naming Polyatomic Ions

Name these polyatomic ions:

 SCN^{-} SO_4^{2-} PO_4^{3-}

 $BrO_3^ NO_3^ NH_4^+$

Writing Polyatomic Formulas

- Overall charge for all atoms, so must be written exactly as shown – do not get rid of numbers!!!!
- For more than one, must put brackets around whole ion
 - e.g. (NH₄)₂O, Ca(NO₃)₂

Example: Polyatomic Formulas

Write the formula for each: sodium nitrate

calcium phosphate

iron(III) hydroxide

Naming with Polyatomics

- Follow all rules from before!
 - Write cation name (metal or polyatomic), including multivalent charge only if needed
 - Write anion name (non-metal or polyatomic)

Example: Naming Polyatomics

Write the name for each compound.

CaCO₃ CuNO₃ Zn(OH)₂

 NH_4CI $Pb(C_2H_3O_2)_2$

Covalent Compounds

- Contain all non-metals
- Formed when non-metals bond to form a molecule
- Electrons are shared between nonmetals so each has a full valence shell
- e.g. carbon dioxide

Example 1: Ionic / Covalent

Ionic or covalent? potassium iodide lead(II) hydroxide nitrogen monoxide hydrogen sulfide silver nitrate carbon tetrachloride

Example 2: Ionic / Covalent

Ionic or covalent? $Fe(C_2H_3O_2)_2$ HBr XeF_2 Al_2O_3 $(NH_4)_3PO_4$ CH_4

Naming Covalent Compounds

- Name elements in order first is full element name, second is "ion" name (e.g. sulfide)
- Second element has a **prefix**
- First element only has a prefix if its more than one

Covalent Prefixes

Number of Atoms	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

Example: Naming Covalent

Name these:

PCI₅

 N_2O_3

 H_2O

SF₆

 $\mathrm{P_4O_{10}}$

Special Covalent Names

Memorize these ones!

- Water (H₂O)
- Methane (CH₄)
- Ammonia (NH₃)
- **Diatomic** elements (X₂)

H₂ O₂ F₂ Br₂ I₂ N₂ Cl₂

Writing Covalent Formulas

- Write elements, in order of name
- Prefix tells how many of each
- Example: dinitrogen pentoxide

 N_2O_5

Example: Writing Covalent Formulas

Write the formula for each: dinitrogen tetrasulfide nitrogen triiodide xenon hexafluoride bromine carbon tetrachloride diphosphorus pentoxide

Naming and Formulas for Mixed Compounds

FIGURE OUT IF IT IS IONIC OR COVALENT FIRST!

IONIC DOES NOT HAVE PREFIXES
- COVALENT DOES!!

Help Ms. Hayduk keep her sanity!

Chemical Reactions

- Chemical changes one or more NEW substances are produced from one or more other substances
- Original substances are REACTANTS
- New substances are PRODUCTS
- Atoms are rearranged

Chemical Equations

- Three types: word equations, skeleton equations, balanced chemical equations
- General form:

Reactant A + Reactant B → Products

(It's like math but more exciting.)

Word Equations

- All substances are written using WORDS
- Use correct names for all compounds!
- Use + between reactants and between products and → to separate reactants and products

Example 1: Word Equations

sodium + water → sodium hydroxide + hydrogen gas

- a. How do you know this is a chemical reaction?
- b. What are the reactants?
- c. What are the products?
- d. READ THIS REACTION!

Example 2: Word Equations

Write word equations for each of these:

- a. Copper(II) oxide reacts with sulfuric acid to make copper(II) sulfate and water.
- b. Zinc and hydrochloric acid react to make zinc chloride and hydrogen gas.
- c. Magnesium and chlorine react to make magnesium chloride.

Example 3: Word Equations

Write word equations for:

- a. $Zn + O_2 \rightarrow ZnO$
- b. Fe + CuCl₂ \rightarrow FeCl₂ + Cu
- c. $Mn(NO_3)_2 + Na_3PO_4 \rightarrow NaNO_3 + Mn_3(PO_4)_2$

Example 4: Word Equations

What's missing?

Copper carbonate + hydrogen sulfate →

_____ sulfate + carbon dioxide + water

Copper + _____ nitrate →

copper(II) nitrate + silver

Skeleton Equations

- All compounds written as correct formulas
- Keep + and → where they were in the word equation
- May also include states:
 - solid (s) liquid (l)
 - gas (g) aqueous (aq)

Aqueous vs. Liquid

Aqueous is something dissolved in water ... like SALT WATER, which is NaCl (aq)...

Liquid is a pure substance in liquid form \dots like WATER, which is H_2O (I)...

Example: Skeleton Equations

Write these as skeleton equations.

- a. iron(III) chloride + sodium hydroxide \rightarrow iron(III) hydroxide + sodium chloride
- b. methane + oxygen \rightarrow carbon dioxide + water
- c. ammonium dichromate → chromium(III) oxide + nitrogen + water

Example: Skeleton Equations

Write the word and skeleton equations. Include states in the skeleton equation.

A solution of hydrogen chloride reacts with solid sodium carbonate to produce carbon dioxide, a sodium chloride solution and water.

Question...

How many of each type of atom are in the reactants and products of this reaction?

Fe +
$$O_2 \rightarrow Fe_2O_3$$

Law of Conservation of Mass

- In a chemical reaction, total mass of reactants equals total mass of products
- Why?
 - Atoms are not "lost" just rearranged
 - Number of reactant atoms = number of product atoms
 - Mass of each type of atom is constant

Question...

How many of each type of atom are in the reactants and products of this reaction?

4 Fe + 3
$$O_2 \rightarrow 2 \text{ Fe}_2 O_3$$

Balanced Chemical Equations

- Coefficient: number added to indicate number of particles of each substance in reaction
- Coefficients multiply by subscripts in a formula
 - e.g. 2H₂O has 4 H and 2 O

Example: Balancing

Steps to Balance

- 1. Balance the metals.
- 2. Balance the non-metals that are not hydrogen or oxygen.
- 3. Balance hydrogen and oxygen.
- 4. After each step, recheck the previous steps and be sure to double check all numbers at the end!

Example: Balancing

$$_$$
 Al + $_$ Cl₂ \rightarrow $_$ AlCl₃

Example: Balancing

$$C_2H_6 + C_2 + H_2O$$

Example: Balancing

$$_$$
 H₃PO₄ + $_$ NaOH \rightarrow $_$ Na₃PO₄ + $_$ H₂O

Example: Balancing

$$_$$
 Ca(AlO₂)₂ + $_$ HCl \rightarrow $_$ AlCl₃ + $_$ CaCl₂ + $_$ H₂O

Acids

- Covalent compounds that dissolve in water to make H+ ions
- Why is this weird?

www.youtube.com/watch?v=0cPFx0wFuVs

Acids are <u>in between</u> covalent and ionic – so they have their own naming rules!

Binary Acids

- H + one element or polyatomic without oxygen
- Name: hydro____ic acid
- Example: HCl = hydrochloric acid

Example 1: Binary Acids

Name each acid:

HBr

HF

HCN

HΙ

H₂S

Example 2: Binary Acids

Write the formula for each:

hydrochloric acid

hydroiodic acid

hydrosulfuric acid

hydrocyanic acid

hydrofluoric acid

Oxyacids

- H + O + one other element
- Naming depends on number of oxygens relative to polyatomic ion
- Example: nitric acid, HNO₃

Naming Rules

+1	0	-1	-2
ClO ₄ -	ClO ₃ -	ClO ₂ -	CIO-
perchlorate	chlorate	chlorite	hypochlorite
HClO ₄	HCIO ₃	HClO ₂	HCIO
perchloric acid	chloric acid	chlorous acid	hypochlorous acid

Naming Rules for Sulfate

Naming Oxyacids

- 1. Identify "base" polyatomic
- 2. Find out how many more or fewer oxygens
- 3. Name:

+1 oxygen = per____ic acid base = ____ic acid

-1 oxygen = ____ ous acid

-2 oxygen = hypo____ous acid

Example: Oxyacids

Name these oxyacids:

H₃PO₄

HNO₂

HBrO

H₂CO₃

 HIO_4

Example: Naming Acids

Name all of these acids:

HCIO

HF

H₂SO₃

HBrO₂

HCN

Properties of Acids