CHEMICAL REACTIONS

The Atom

Periodic Table

- Periods: horizontal rows
- 7 periods
- Groups (families): vertical columns
- All elements have similar properties
- 18 groups

Classes of Elements

- Metals - left side of periodic table
- Non-metals - right side of periodic table
- Semi-metals (metalloids) - along the staircase (B, Si, Ge, As, Sb, Te, Po, At)

Periodic Table Information

26

Iron
55.845

Atomic Number

- Number of protons in the nucleus
- Also, the number of electrons for an atom
- Determines the order of elements on the periodic table

Atomic Mass

- Mass of one atom of an element
- Measured in atomic mass units (amu)
- Atomic mass = \# protons + \# neutrons

Chemical Symbols

VERY IMPORTANT! DON'T GUESS! LOOK IT UP!

USE CAPITALS AND LOWERCASE PROPERLY

Example: Atoms

For LEAD:

- What is the chemical symbol?
- What is the atomic number?
- What is the atomic mass?
- How many protons, electrons and neutrons?

Bohr Model of the Atom

- Electrons orbit the nucleus in "shells"
- Each shell has a specific energy level, and can fit a maximum number of electrons:

Shell	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Electrons	2	8	8	18

Bohr-Rutherford Models

Examples: Bohr-Rutherford

Mg

K
P

Valence Electrons

- Can find out based on group - last number of group
- e.g. group 1 has 1 valence electron, group 13 has 3, group 18 has 8
■ THIS IS REALLY IMPORTANT TO REMEMBER

Lewis Diagrams

- Show chemical symbol and valence electrons only, no circles
- Dots on each side unpaired, then start pairing

Valence Electrons

- Valence shell is outside shell
- Valence electrons - electrons in outer shell
- Core electrons - electrons in inner shells
- Example: aluminum has three valence electrons and ten core electrons

Example: Valence Electrons

How many valence electrons in...
As $\quad \mathrm{Ba} \quad \mathrm{Rn} \quad \mathrm{K}$

Mg

0
Ba Rn
K

Mg Ga
Cl
I

P
Pb
H

Examples: Lewis Diagrams

Draw a Lewis diagram for:

potassium	rubidium
selenium	bromine
radon	chlorine

Question...

Noble gases (group 18) are stable and unreactive. Why?

What does oxygen have to do to be stable?

Example 1: Ions

For each atom, either cross out or add electrons to make it stable.
Mg.
-క̣:
H.

Nㅜ:

Ions

- Only electrons can be added or removed to an atom (protons and neutrons are stuck in place)
- Atoms are stable ("happy") when they have a full valence shell, either by gaining or losing electrons

Question...

What happens to the atom when it gains or loses electrons?

How is it different for gaining/losing?

RULES

- Metals lose electrons and become positive
- CATIONS
- Non-metals gain electrons and become
negative - ANIONS
- Charge $=$ protons - electrons

Ions

Example 2: Ions

What's the charge for each if it is an ion?

Mg	O	Cl	P
K	Li	Al	F
Ca	S	N	H

Ionic Notation

Charge

Naming Ions

- Metals keep their name + ion
- e.g. sodium ion, magnesium ion, aluminum ion
- Non-metals get the ending "-ide" + ion
- "-ine" ending becomes "-ide"
- selenium becomes selenide
- All others take first syllable + "-ide"

Ionic Compounds

- Contain a metal and a non-metal
- Formed when cation (+) and anion (-) are attracted to form a compound
- Electrons from metal are transferred (given) to non-metal
- e.g. sodium chloride

$$
\text { Ná + :̣̣!: } \rightarrow \text { Ná :C̣ị: }
$$

Example 3: Ions

Write each in ionic notation.

Mg	O	Cl	P
K	Li	Al	F
Ca	S	N	H

Example 4: Ions

Name these ions.

H^{+}	Mg^{2+}	N^{3-}	S^{2-}	F^{-}
O^{2-}	Se^{2-}	K^{+}	Sr^{2+}	Cl^{-}
Br	Na^{+}	P^{3-}	I^{-}	Ba^{2+}

Naming Ionic Compounds

■ Metal ion name + non-metal ion name

- e.g. SrF_{2} is strontium fluoride

Example: Naming Ionic Compounds

Write the name for each ionic compound:
$\mathrm{K}_{2} \mathrm{~S}$
AIP
CaCl_{2}
NaH

MgO
RbI_{2}

Question...

How do you know how many of each ion there is?

Ionic Formulas

- Metal first, then non-metal
- Number of each ion is a subscript

$\mathrm{Al}_{2} \mathrm{O}_{3}$
 Aluminum oxide

Ionic Formulas

- Total charge must equal zero!
\# electrons lost by metals
=
\# electrons gained by non-metals

Example 1: Ionic Formulas

For each pair of ions, build the compound, draw it, then write the formula:
K^{+}and I^{-}
Mg^{2+} and Cl^{-}
Ca^{2+} and N^{3-}

Example 2: Ionic Formulas

For each name, determine the ion charges, build the compound, draw it, then write the formula:
strontium oxide
magnesium phosphide
calcium sulfide

Ionic Formula Trick

Important: reduce! $\left(\mathrm{Ca}^{2+}\right.$ and O^{2-} is CaO , not $\operatorname{Ea}_{z} \theta_{z}$)

Example: Ionic Formulas

Write the formula for potassium nitride.

Steps for Ionic Formulas from Names

1. Determine ion charges
2. Write each ion in ionic notation
3. "Draw" compound OR cross charges
4. Write formula with symbols and subscripts

Multivalent Ions

- Transition metals: elements in groups 3-12
- Some have only one charge, some have more than one
- Multivalent: ions that can have more than one charge
- e.g. iron can be $2+$ or $3+$

Example: Multivalent Ions

Is this multivalent? List the charge(s).
copper zinc gold
chromium silver manganese

Naming Multivalent Ions

- Metal name + charge in ROMAN	$\mathbf{1}$	I
NUMERALS + ion	$\mathbf{2}$	II
- e.g. iron(II) ion, copper(I) ion	3	III
- MULTIVALENT IONS MUST HAVE	$\mathbf{4}$	IV
A CHARGE	$\mathbf{5}$	V
	$\mathbf{6}$	VI
	$\mathbf{1}$	VII

[^0]
Example: Multivalent Ions

Write the name for each:

Pd^{2+}	Mn^{7+}	Cr^{6+}
Sn^{4+}	Au^{3+}	Cu^{+}

Question...

What is the charge of each ion in CoO ?

Example: Ionic Formulas

 with Multivalent IonsWrite the formula for each:
copper(II) fluoride
lead(IV) oxide
nickel(III) nitride

Determining Charge

1. Determine charge of anion (non-metal) only one possibility
2. Multiply charge by number of anions to get total negative charge
3. Multiply by -1 to get total positive charge
4. Divide total positive charge by number of cations (metal)

Example 1: Determining Charge

CrO

Example 2: Determining Charge

FeCl_{2}

Example 3: Determining Charge

$$
\mathrm{Ti}_{2} \mathrm{~S}_{3}
$$

Example: Naming

Multivalent Compounds
Write the name for each compound. Don't forget Roman numerals for charge!
PdO $\quad \mathrm{MnN} \quad \mathrm{SnF}_{2}$
$\begin{array}{lll}\mathrm{Cu}_{2} \mathrm{~S} & \mathrm{Au}_{3} \mathrm{P} & \mathrm{Mn}_{2} \mathrm{O}_{7}\end{array}$

Polyatomic Ions

- Group of atoms bonded together that has an overall charge
- poly = more than one
- e.g. hydroxide ion is OH^{-}
- Name as written on ion PT

Example: Naming
Polyatomic Ions
Name these polyatomic ions:

SCN^{-}	$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{PO}_{4}{ }^{3-}$
$\mathrm{BrO}_{3}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{NH}_{4}{ }^{+}$

Writing Polyatomic Formulas

- Overall charge for all atoms, so must be written exactly as shown - do not get rid of numbers!!!!
- For more than one, must put brackets around whole ion
- e.g. $\left(\mathbf{N H}_{\mathbf{4}}\right)_{2} \mathrm{O}, \mathrm{Ca}\left(\mathbf{N O}_{\mathbf{3}}\right)_{2}$

Example: Polyatomic Formulas

Write the formula for each:
sodium nitrate
calcium phosphate
iron(III) hydroxide

Example: Naming

 PolyatomicsWrite the name for each compound.
$\begin{array}{lll}\mathrm{CaCO}_{3} & \mathrm{CuNO}_{3} & \mathrm{Zn}(\mathrm{OH})_{2}\end{array}$
$\mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$

Naming with Polyatomics

- Follow all rules from before!
- Write cation name (metal or polyatomic), including multivalent charge only if needed
- Write anion name (non-metal or polyatomic)

Covalent Compounds

- Contain all non-metals
- Formed when non-metals bond to form a molecule
- Electrons are shared between nonmetals so each has a full valence shell
- e.g. carbon dioxide

Example 2: Ionic / Covalent

Ionic or covalent?

$\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
HBr
XeF_{2}
$\mathrm{Al}_{2} \mathrm{O}_{3}$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
CH_{4}

Naming Covalent Compounds

- Name elements in order - first is full element name, second is "ion" name (e.g. sulfide)
- Second element has a prefix
- First element only has a prefix if its more than one

Covalent Prefixes

Number of Atoms	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

Special Covalent Names

Memorize these ones!

- Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
- Methane $\left(\mathrm{CH}_{4}\right)$
- Ammonia $\left(\mathrm{NH}_{3}\right)$
- Diatomic elements (X_{2})
$\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{Br}_{2} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{2}$

Example: Writing Covalent Formulas

Write the formula for each:
dinitrogen tetrasulfide
nitrogen triiodide
xenon hexafluoride
bromine
carbon tetrachloride
diphosphorus pentoxide

Naming and Formulas for Mixed Compounds

FIGURE OUT IF IT IS IONIC OR COVALENT FIRST!
IONIC DOES NOT HAVE PREFIXES - COVALENT DOES!!

Help Ms. Hayduk keep her sanity!

Chemical Equations

- Three types: word equations, skeleton equations, balanced chemical equations
- General form:

Reactant A + Reactant B \rightarrow Products
(It's like math but more exciting.)

Chemical Reactions

- Chemical changes - one or more NEW substances are produced from one or more other substances
- Original substances are REACTANTS
- New substances are PRODUCTS
- Atoms are rearranged

Word Equations

- All substances are written using WORDS
- Use correct names for all compounds!
- Use + between reactants and between products and \rightarrow to separate reactants and products

Example 1: Word Equations

sodium + water \rightarrow sodium hydroxide + hydrogen gas
a. How do you know this is a chemical reaction?
b. What are the reactants?
c. What are the products?
d. READ THIS REACTION!

Example 2: Word Equations

Write word equations for each of these:
a. Copper(II) oxide reacts with sulfuric acid to make copper(II) sulfate and water.
b. Zinc and hydrochloric acid react to make zinc chloride and hydrogen gas.
c. Magnesium and chlorine react to make magnesium chloride.

Example 3: Word Equations

Write word equations for:
a. $\mathrm{Zn}+\mathrm{O}_{2} \rightarrow \mathrm{ZnO}$
b. $\mathrm{Fe}+\mathrm{CuCl}_{2} \rightarrow \mathrm{FeCl}_{2}+\mathrm{Cu}$
c. $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaNO}_{3}+\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Example 4: Word Equations

What's missing?
Copper carbonate + hydrogen sulfate \rightarrow
\qquad sulfate + carbon dioxide + water

Copper + \qquad nitrate \rightarrow
copper(II) nitrate + silver

Aqueous vs. Liquid

Aqueous is something dissolved in water ... like SALT WATER, which is $\mathrm{NaCl}(\mathrm{aq})$...

Liquid is a pure substance in liquid form ... like WATER, which is $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$...

Example: Skeleton Equations

Write the word and skeleton equations. Include states in the skeleton equation. A solution of hydrogen chloride reacts with solid sodium carbonate to produce carbon dioxide, a sodium chloride solution and water.

Question...

How many of each type of atom are in the reactants and products of this reaction?

$$
\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Law of Conservation of Mass

- In a chemical reaction, total mass of reactants equals total mass of products
- Why?
- Atoms are not "lost" - just rearranged
- Number of reactant atoms = number of product atoms
- Mass of each type of atom is constant

Balanced Chemical Equations

- Coefficient: number added to indicate number of particles of each substance in reaction
- Coefficients multiply by subscripts in a formula
- e.g. $2 \mathrm{H}_{2} \mathrm{O}$ has 4 H and 2 O

Steps to Balance

1. Balance the metals.
2. Balance the non-metals that are not hydrogen or oxygen.
3. Balance hydrogen and oxygen.
4. After each step, recheck the previous steps and be sure to double check all numbers at the end!

Example: Balancing

\qquad $\mathrm{Al}+$ \qquad $\mathrm{Cl}_{2} \rightarrow$ \qquad AlCl_{3}

Example: Balancing

$\ldots \mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
\qquad

Example: Balancing
$\mathrm{H}_{3} \mathrm{PO}_{4}+$ \qquad $\mathrm{NaOH} \rightarrow$ \qquad $\mathrm{Na}_{3} \mathrm{PO}_{4}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$

Acids

- Covalent compounds that dissolve in water to make H^{+}ions
- Why is this weird?
www.youtube.com/watch?v=0cPFx0wFuVs
- Acids are in between covalent and ionic so they have their own naming rules!

Example: Balancing

$\ldots \mathrm{Ca}\left(\mathrm{AlO}_{2}\right)_{2}+\ldots \mathrm{HCl} \rightarrow \ldots \mathrm{AlCl}_{3}+\ldots \mathrm{CaCl}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
\qquad
\qquad

Example 1: Binary Acids

Name each acid:
HBr
HF
HCN
HI
$\mathrm{H}_{2} \mathrm{~S}$

Example 2: Binary Acids

Write the formula for each:
hydrochloric acid
hydroiodic acid
hydrosulfuric acid
hydrocyanic acid
hydrofluoric acid

Naming Rules

$\mathbf{+ 1}$	$\mathbf{0}$	$\mathbf{- 1}$	$\mathbf{- 2}$		
ClO_{4}^{-}	ClO_{3}^{-} chlorate	ClO_{2}^{-} chlorite	ClO^{-} hypochlorite		
HClO_{4}	HClO_{3}	HClO_{2}	HClO		
perchloric acid	chloric acid				
acid					hypochlorous
:---:					
acid					

Naming Oxyacids

1. Identify "base" polyatomic
2. Find out how many more or fewer oxygens
3. Name:
+1 oxygen $=$ per___ic acid
base $=$ \qquad ic acid
-1 oxygen = \qquad ous acid
-2 oxygen $=$ hypo \qquad ous acid

Example: Oxyacids

Name these oxyacids:
$\mathrm{H}_{3} \mathrm{PO}_{4}$
HNO_{2}
HBrO
$\mathrm{H}_{2} \mathrm{CO}_{3}$
HIO_{4}

Example: Naming Acids

Name all of these acids:
HClO
HF
$\mathrm{H}_{2} \mathrm{SO}_{3}$
HBrO_{2}
HCN

Properties of Acids

[^0]: *Note that not all possible charges are listed on ion PT

