Laws of Thermodynamics

Zeroth Law

Heat flows from hot to cold

First Law

Energy and matter are conserved

Second Law

Matter tends toward chaos

Third Law

• Entropy (disorder) of a pure crystal at 0K is 0

Internal Energy and Heat Flow

Thermodynamics

AP Chemistry 30L – Ms. Hayduk

- Internal energy is all energy in a chemical system
- · Heat flow changes energy of system
- Increased internal energy may cause:
 - Temperature increase (kinetic)
 - Phase change
 - Chemical reaction
- Decrease can cause first two, not reaction

Heat and Work

- Energy exchanged is accounted for with heat (q) and work (w) $\Delta E = q + w$
- Work = force acting on an object

 In chemistry, done BY a gas through expansion or TO a gas by compression
 - Pressure/volume work: $w = -P\Delta V$

Calculating Heat

- Calorimetry: process of measuring heat through temperature change of a system
- Measured by:

$q = mc\Delta T$

- Where q is quantity of heat (J), m is mass of substance (g), c is specific heat capacity of substance (J/g $^{\circ}$ C) and Δ T is temperature change
- q = -ΔH at constant pressure

Ways to Calculate Enthalpy

- 1. Calorimetry
 - Experimental
 - $q = mc\Delta T$
- 2. Enthalpy of Formation
 - From table of standard values
 - Production of one mole of a compound from elements in standard states, 0 for elements
 - $\Delta H^{\circ}_{rxn} = \Sigma H^{\circ}_{f(products)} \Sigma H^{\circ}_{f(reactants)}$

Ways to Calculate Enthalpy

- 3. Hess' Law
 - Sum of enthalpies of chemical equations that add to overall equation to get overall enthalpy
 - Enthalpy is a state function not path dependent
- 4. Stoichiometry
 - Use ΔH for a balanced reaction (kJ/mol)
 - e.g. if 1.00 g of Fe reacts, how much heat is released if:

 $\mbox{4 Fe} + \mbox{3 O}_2 \rightarrow \mbox{2 Fe}_2 \mbox{O}_3 ~~ \mbox{\Delta H} = \mbox{-1652 kJ/mol}_{rxn}$

Ways to Calculate Enthalpy

- 5. Bond Energy
 - $\Delta H^{\circ}_{rxn} = \Sigma B E_{broken} \Sigma B E_{formed}$
 - Use Lewis structures and a table of values for bond energies

Entropy

- Disorder of a system
- Entropy for a substance is specific at a certain temperature, relative to the substance at 0 K, where S = 0
- Less disorder (- Δ S) or more disorder (+ Δ S)

Second Law

- · Why do systems tend towards disorder?
- Based on probability there are many more ways for a system to be disordered than ordered

Example: Second Law

Physical Evidence of Entropy

- Greater disorder/randomness = larger S
- Increases from solid to liquid to gas
- Increases when pure solid or liquid dissolves in water (EXCEPT carbonates)
- Volume is increased in a gaseous system
- More complex molecules or more molecules are formed

Example: Predicting Entropy

Predict the sign of ΔS for each of the following processes:

- A. Solid sugar is added to water to form a solution
- B. Iodine vapour condenses on a cold surface to form crystals

Calculating Entropy

- 1. Hess' Law
- 2. Table of Standard Values $\Delta S^{\circ}_{rxn} = \Sigma \Delta S^{\circ}_{products} - \Sigma \Delta S^{\circ}_{reactants}$

Note that entropy is given in **J/K·mol**, not kJ!

Example: Entropy Calculation

Determine the entropy for the reaction: $2 \text{ SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{ SO}_3(g)$

Substance	S° (J/K·mol)
SO ₂ (g)	248.1
O ₂ (g)	205.3
SO ₃ (g)	256.6

Entropy for Phase Changes

• For reversible phase changes (constant temperature) or systems at equilibrium: $-\Delta H$

$$\Delta S = \frac{-\Delta F}{T}$$

Spontaneity of Reactions

- Terms to know:
 - Enthalpy, ΔH (heat content of a system)
 - Entropy, ΔS (disorder of a system)
- Spontaneous means a reaction will occur without outside intervention, either quickly or slowly

Spontaneity of Reactions

- Exothermic reactions are generally favoured (+ Δ H)
- More disorder is generally favoured (+ Δ S)
- May be determined by looking at ΔS_{univ} $\Delta S_{system} + \Delta S_{surroundings} = \Delta S_{universe}$
- If ΔS_{univ} is +, reaction is spontaneous
- If ΔS_{univ} is -, reaction is non-spontaneous

Example: Spontaneity

 $\begin{array}{l} 2 \ \text{H}_2 \ (\text{g}) + \text{O}_2 \ (\text{g}) \rightarrow 2 \ \text{H}_2 \text{O} \ (\text{g}) \\ \\ \Delta \text{H} = -483.6 \ \text{kJ} \end{array}$

- a. Determine ΔS_{system} using standard entropies.
- b. Determine $\Delta S_{surroundings}$ using enthalpy. (Remember that $\Delta H_{rxn} = -\Delta H_{surroundings}$)
- c. Determine $\Delta S_{universe}$. Is this reaction spontaneous?

Gibb's Free Energy

- Determines if reaction is thermodynamically favoured (spontaneous) or not
- Negative is spontaneous $\Delta G^{\circ}_{rxn} = \Sigma \Delta G^{\circ}_{products} - \Sigma \Delta G^{\circ}_{reactants}$ to calculate from a table of values

Or, use Hess' law

Example: Gibb's Free Energy

Find the free energy of formation for the oxidation of water to produce hydrogen peroxide.

V.I.E.

$\Delta G = \Delta H - T \Delta S$

Calculate enthalpy and entropy from a table of values.

ΔG°_{f}			
H ₂ O (I)	-56.7 kcal/mol		
O ₂ (g)	0 kcal/mol		
H ₂ O ₂ (I)	-27.2 kcal/mol		

Example: Very Important Equation

Determine ΔG for the following reaction at 25°C and 1 atm:

 $2 \text{ SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{ SO}_3(g)$

Substance	$\Delta H_f^{\circ}(kJ/mol)$	$S^{\circ}(J/K \cdot mol)$
$SO_2(g)$	-297	248
$SO_3(g)$	-396	257
$O_2(g)$	0	205

Free Energy for an Equilibrium System

- If the system is <u>not</u> at equilibrium: $\Delta G = \Delta G^{\circ} + RT \ln Q$
 - R is universal gas constant, 8.314 J/mol·K T is temperature in Kelvin Q is reaction quotient
- At equilibrium:
 - $\Delta G = RT \ln K$
 - R is universal gas constant, 8.314 J/mol·K
 - T is temperature in Kelvin
 - K is equilibrium constant

Example 1: Equilibrium

To synthesize methanol:

CO (g) + 2 H₂ (g) \rightleftharpoons CH₃OH (l) Calculate ΔG at 25°C for this reaction where carbon dioxide is 5.0 atm and hydrogen is 3.0 atm.

Example 2: Equilibrium

When iron rusts:

4 Fe (s) + 3 $O_2(g) \rightleftharpoons 2 Fe_2O_3$ (s) Calculate the equilibrium constant for this reaction at 25°C.

Substance	$\Delta H_f^{\circ}(kJ/mol)$	$S^{\circ}(J/K \cdot mol)$
$Fe_2O_3(s)$	-826	90
Fe(s)	0	27
$O_2(g)$	0	205