Name:	Date:	

AP Chemistry: Thermodynamics Review

1. Consider the reaction:

$$NH_4NO_3$$
 (s) $\rightarrow NH_4^+$ (aq) + NO_3^- (aq) $\Delta H^\circ = 25$ kJ/mol

- a. Yes. Entropy increases ($\Delta S>0$) because the liquid state is less ordered than solid, OR more molecules is more disordered than fewer
- b. No. Since it is positive, the reaction is endothermic in the forward direction.
- 2. Consider the acid-base neutralization reaction:

$$H^+$$
 (aq) + OH^- (aq) $\rightarrow H_2O$ (I) $\Delta H^\circ = -56.2$ kJ/mol

- a. $\Delta S < 0$ (becomes more ordered from reactants to products), so does not favour spontenaity
- b. Yes, since the reaction is exothermic and $\Delta H > 0$.
- c. Enthalpy, since neutralization reactions are spontaneous. ΔH is dominant over ΔS , since the enthalpy favours spontaneity and the entropy does not.
- 3. Predict whether the entropy change is greater or less than zero for each of the following processes and explain:
 - a. ΔS<0
 - b. $\Delta S > 0$
 - c. $\Delta S > 0$
 - d. $\Delta S < 0$
- 4. $\Delta S^{\circ} = -189 \text{ J/mol} \cdot \text{K}$
- 5. Reaction is spontaneous, $\Delta G = -2100 \text{ kJ}$
- 6. $\Delta S_{\text{vap}} = 109 \text{ J/mol} \cdot \text{K}$ (note that $\Delta G = 0$ for a phase change)
- 7. Consider the following reaction at standard conditions:

$$BaSO_4$$
 (s) $\rightleftharpoons Ba^{2+}$ (aq) + SO_4^{2-} (aq)

- a. $K = 1.09 \times 10^{-10}$
- b. $\Delta G = -12$ kJ, so forward reaction is favoured (spontaneous)