AP Chemistry: Thermodynamics Review

1. Consider the reaction:

 $NH_4NO_3 (s) \rightarrow NH_4^+ (aq) + NO_3^- (aq)$ $\Delta H^\circ = 25 \text{ kJ/mol}$

- a. Predict the change in entropy when solid ammonium nitrate dissolves in water. Does ΔS favour a spontaneous reaction? Explain.
- b. Does the enthalpy factor favour the spontaneity of the reaction? Explain.
- 2. Consider the acid-base neutralization reaction:

 H^+ (aq) + OH⁻ (aq) \rightarrow H₂O (I) $\Delta H^\circ = -56.2 \text{ kJ/mol}$

- a. Predict the change in entropy for the reaction. Does ΔS favour the spontaneity of the reaction? Explain.
- b. Does the enthalpy change favour the spontaneity of the reaction? Explain.
- c. Which factor (enthalpy or entropy) is the driving force for this reaction? Explain.
- 3. Predict whether the entropy change is greater or less than zero for each of the following processes and explain:
 - a. Freezing hexane
 - b. Dissolving sodium chloride in water
 - c. Heating nitrogen from 10°C to 80°C
 - d. $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$
- 4. Calculate the standard entropy change for the oxidation of sulfur dioxide at standard conditions:

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$

Given: S°₅₀₂ = 248 J/mol·K S°₀₂ = 205 J/mol·K S°₅₀₃ = 256 J/mol·K

5. Calculate the standard free energy change for the reaction:

 $C_{3}H_{8}\left(g\right)+O_{2}\left(g\right)\rightarrow3\ CO_{2}\left(g\right)+4\ H_{2}O\left(g\right)$

Given: $\Delta G^{o}_{f, C3H8} = -23 \text{ kJ/mol}$ $\Delta G^{o}_{f, C02} = -394.4 \text{ kJ/mol}$ $\Delta G^{o}_{f, H20} = -237.2 \text{ kJ/mol}$

- 6. The molar heat of vaporization of water is 40.6 kJ/mol at 100.°C and 1 atm. What is the entropy of vaporization of water at this temperature and pressure?
- 7. Consider the following reaction at standard conditions:

 $BaSO_4$ (s) $\Rightarrow Ba^{2+}$ (aq) + SO_4^{2-} (aq)

- a. The ΔG° for this reaction is 56.8 kJ/mol. Determine the equilibrium constant for this reaction.
- b. Determine ΔG of the reaction if $[Ba^{2+}]$ is 3.2×10^{-5} M and $[SO_4^{2-}]$ is 2.4×10^{-8} M. Is the forward or reverse reaction favoured at these conditions?