Solubility

Solubility Equilibrium

AP Chemistry 30 - Ms. Hayduk

• How much of a solute can dissolve in a specific volume of solution

- When max amount of solid is dissolved, equilibrium is established (saturated solution)
- K_{sp} ion product constant

Ion Product Constant

 $PbI_{2} (s) \rightleftharpoons Pb^{2+} (aq) + 2 I^{-} (aq)$ $K_{sp} = [Pb^{2+}][I^{-}]^{2}$

- Tells you max ions that dissolve as low solubility salt is added to water
- Minimum concentration of ions needed for precipitate to form

Example

Write the dissociation equation and $K_{\rm sp}$ expression for each of the following: ${\rm CaF}_2$

CaC₂O₄

Solubility Rules: AP Style

- Compounds with nitrate ion, ammonium ion or group I metal ions are soluble – What do these have in common?
- Soluble = more than 3 g dissolves in 100 mL of water
- · Everything else is low solubility

Calculate K_{sp}

- Use equilibrium concentrations to determine $K_{\mbox{\scriptsize sp}}$
- Steps:
 - 1. Write dissociation equation and $\rm K_{sp}$ expression
 - 2. Determine ion concentrations from given
 - 3. Solve

2

Example 1: K_{sp}

Copper(I) bromide has a measured solubility of 2.0 \times 10⁻⁴ mol/L at 25°C. Calculate the $K_{\rm sp}$ value.

Example 2: K_{sp}

Calculate the K_{sp} value for bismuth sulfide (Bi_2S_3) which has a solubility of 1.0×10^{-15} mol/L at 25°C.

Calculating Solubility

- Can only compare solubilities if salts have the same ion:ion ratio
- Use K_{sp} and values for x to determine solubility
- Generally, solubility is calculated at 25°C. Solubility can vary up or down based on temperature.

Calculating Solubility

Steps:

- 1. Write dissociation equation and $\rm K_{sp}$ expression
- 2. Assign ion concentrations values of *x* using coefficients
- 3. Solve for x

Example 1: Solubility

For CaCO₃ at 25°C, K_{sp} is 3.8 × 10⁻⁹. Determine its solubility in pure water in: a. Moles per litre (standard unit)

b. Grams per litre

Example 2: Solubility

For Cu(IO₃)₂ at 25°C, K_{sp} is 1.4 × 10⁻⁷. Calculate its solubility at that temperature.

Common Ion Effect

- One of the ions from the salt is present in the solution
- Decreases solubility (Le Chatelier's principle – increased product concentration)
- Use *x* for the other ion and the given concentration for the present ion

Example: Common Ion Effect

Calculate the solubility of solid CaF₂ (K_{sp} = 4.0×10^{-11}) in a 0.025 M NaF solution.

Return of Reaction Quotient

- Use reaction quotient (Q) to determine if precipitate will form
 - -Q < K, no precipitate (unsaturated solution)
 - $-Q \ge K$, precipitate forms (saturated or supersaturated solution)

Reaction Quotient

Steps:

- 1. Write dissociation equation and $\rm K_{sp}$ expression
- 2. Determine ion concentrations <u>after</u> <u>dilution</u>
- 3. Substitute ion concentrations and solve for Q compare to K_{sp}

Example: Reaction Quotient

A solution is prepared by adding 750.0 mL of 4.00×10^{-3} M Ce(NO₃)₃ to 300.0 mL of 2.00×10^{-2} M KIO₃. Will Ce(IO₃)₃ (K_{sp} = 1.9 $\times 10^{-10}$) precipitate from this solution?

Selective Precipitation

- When multiple ions are in a solution, selective precipitation is used to remove them one at a time
- Can be done with different solutions or by minimizing concentrations
- No steps here use what you already know

Example: Selective Precipitation

A solution contains 1.0 \times 10 $^{-4}$ M Cu+ and 2.0 \times 10 $^{-3}$ M Pb^{2+}.

- a. If a source of I⁻ is added gradually to this solution, will PbI₂ ($K_{sp} = 1.4 \times 10^{-8}$) or CuI ($K_{sp} = 5.3 \times 10^{-12}$) precipitate first?
- b. Specify the concentration of I⁻ needed to begin precipitation of each salt.