Solutions

Solubility Equilibrium

Chemistry 30

Mixture containing two or more components, but looks like one homogeneous substance

- **Solute**: dissolved substance
- **Solvent**: dissolving substance
- In this course: ionic compounds dissolved in water only

Dissociation Equations

- Ionic compounds dissolve in water by <u>dissociation</u> (breaking apart)
- For example: Ba(NO₃)₂ (s) \rightarrow Ba²⁺ (aq) + 2 NO₃⁻ (aq)

Example: Dissociation Equations

 Na_2SO_4

 $Ca(C_2H_3O_2)_2$

DIY Dissociation Equations	Describing Solutions
AgNO ₃	The amount of solute in a solvent can be described qualitatively by the terms dilute and concentrated . These are <u>qualitative</u>
K ₂ O	terms: – Concentrated: lots of solute per volume of solvent – Dilute: very little solute per volume of solvent
Ba(OH) ₂	

Describing Solutions

Every substance has a maximum amount of solute that can dissolve in the solvent. This allows for a <u>quantitative</u> description:

- Unsaturated: less than maximum amount of solute
- Saturated: maximum amount of solute
- Supersaturated: more than maximum amount of solute (achieved by raising temperature to dissolve solute, then slowly cooling)

Describing Solutions

Solubility

- **Solubility**: <u>how much</u> of something can dissolve in something else – At maximum amount, solution is **saturated**
- Very soluble will dissolve a lot, low solubility will dissolve very little
- Based on attraction of ions strong attraction means it will not dissolve well

Solubility

- Solubility is a scale
- Soluble compounds dissociate 100% in solution (reaction favours products)
 - Dissociation equation has a one-way arrow NaCl (s) \rightarrow Na⁺ (aq) + Cl⁻ (aq)

Solubility

- Low solubility means it dissociates less than 100% (some ions will stay attached, reaction favours reactants)
 - Dissociation equation has an equilibrium arrow

 PbI_2 (s) $\Rightarrow Pb^{2+}$ (aq) + 2I⁻ (aq)

Determining Solubility	Examples:	Solubility Rules
Option 1: Solubility Rules Chart • Qualitative • Sorted by anion	Soluble (aq) or low Ba(OH) ₂	solubility (s)? Na ₃ PO ₄
Note: soluble = aqueous, low solubility = solid	CuI ₂	Pb(NO ₃) ₂
"If these ions are together in a solution, will a solid form?"	AgC ₂ H ₃ O ₂	CaCO ₃

DIY Solubility Rules		Double Displacement Reactions
CuI	ZnSO ₄	General form: AB + CD \rightarrow AD + CB
		But really
KNO ₃	CaF ₂	$A^+ + B^- + C^+ + D^- \rightarrow ???$
H ₂ CO ₃	Fe_2S_3	If AD and/or CB has low solubility , it will make a solid. Otherwise no reaction occurs – everything stays dissolved as ions.

Double Displacement Reactions

Example: Solubility Rules

 Na_2CO_3 (aq) + 2 AgNO₃ (aq) \Rightarrow 2 NaNO₃ _ + Ag₂CO₃ _

$$AI_2(CrO_4)_3$$
 (aq) + H_2SO_4 (aq) \rightleftharpoons

 $\mathsf{Cu}_2\mathsf{SO}_4\,(\mathsf{aq}) + \mathsf{CaCl}_2\,(\mathsf{aq}) \rightleftharpoons$

Total Ionic Equations

2 NaOH (aq) + CuCl₂ (aq) \Rightarrow 2 NaCl (aq) + Cu(OH)₂ (s)

<u>Total ionic equation</u>: all aqueous compounds are represented as ions:

2 Na⁺ (aq) + 2 OH⁻ (aq) + Cu²⁺ (aq) + 2 Cl⁻ (aq) \Rightarrow 2 Na⁺ (aq) + 2 Cl⁻ (aq) + Cu(OH)₂ (s)

Net Ionic Equations

Spectator ions: ions that do not participate in the reaction

Net ionic equation: remove spectator ions from total ionic equation (no net ionic if no precipitate)

 $2 \text{ OH}^{-}(aq) + Cu^{2+}(aq) \rightleftharpoons Cu(OH)_{2}(s)$

Net Ionic Equations

- Why do double displacement reactions have equilibrium arrows instead of regular arrows?
- How is a net ionic equation related to a dissociation equation?
- When should you use a dissociation equation vs a net ionic equation?

Example: Net Ionic Equations

Write the reaction, total ionic and net ionic equations for the reaction between barium nitrate and sodium carbonate that produces a barium carbonate precipitate. (Use the right arrow!)

DIY Net Ionic Equations

Write the molecular, total ionic and net ionic equations for silver nitrate and magnesium sulfate.

Determining Solubility

Option 2: Solubility Product Constant (K_{sp})

- Constant for a compound, in water, at 25°C.
- Describes how much will dissolve
- Compounds with <u>no</u> K_{sp} listed are soluble
- If listed, compound has low solubility.
 - Large K_{sp} = more soluble, small K_{sp} = less soluble

Example: K_{sp}

Which is more **soluble**? $PbBr_2$ or $PbCl_2$

BaSO₄ or Ag₂SO₄

Co(OH)₂ or CuCO₃

DIY K_{sp}

Write the K_{sp} for each ionic compound, then rank them in order from most to least soluble. Co(OH)₂ CoS CoCO₃

Solubility Product

 To determine solubility or concentration of one or more ions, given the dissociation equation:

 $A_aB_b(s) \Rightarrow a A^+(aq) + b B^-(aq)$

Use an equilibrium constant expression! $K_{sp} = [A^+]^a [B^-]^b$

(Remember solids have a concentration of "1" and are not included in the expression.)

Determining Solubility

 $\begin{array}{rl} A_a B_b \left(s \right) \label{eq:A_a} = a \ A^+ \left(aq \right) + b \ B^- \left(aq \right) \\ -x & +a \ x & +b \ x \end{array}$ Use K_{sp} to determine how many moles of the solid will dissolve per litre of solution .

Use *x* like in the "C" row on an ICE chart to compare moles for each ion.

Example 1: Setting Up Problems

For $Ca_3(PO_4)_2$:

- a. Write the dissociation equation.
- b. Write the "change" column using *x* values
- c. Write the K_{sp} expression.
- d. Substitute into the K_{sp} expression and simplify. (Don't solve.)

Example 2: Determining Solubility

Determine the solubility of AgBr in mol/L at 25°C.

Example 3: Determining Solubility

Determine the concentration of fluoride ions in a saturated solution of magnesium fluoride.

Example 4: Solubility

Determine the K_{sp} for Co(OH)_3 if its solubility is $1.7 \times 10^{-11}.$

DIY Solubility

1. Determine the solubility of $Ba(OH)_2$.

2. If 9.1 \times 10^{10} mol/L will dissolve to make a saturated solution of Sn(OH)_2, what is its K_{sp} ?

Ion Product Constant

- Similar to Q_c
- · Determines if a precipitate will form
- Basically: are there enough of each of the ions to saturate the solution?
- Same calculation as K_{sp} , but use concentrations of ions being mixed together $Q_{sp} \ge K_{sp}$, precipitate will form

 $Q_{sp} < K_{sp}$, no precipitate

Example 1: Ion Product

You are mixing two solutions of <u>equal</u> <u>volume</u>: 0.0010 M NaCl and 0.0050 M Pb(NO₃)₂. Will a precipitate form?

- 1. Determine solid produced and net ionic equation.
- 2. Determine <u>new</u> concentrations of ions.

Example 1: Ion Product (continued)

- 3. Calculate Q_{sp}.
- 4. Compare K_{sp} and Q_{sp}.

Example 2: Ion Product

Will a precipitate form if 200.0 mL of 0.00300 M Ba(NO₃)₂ solution is mixed with 100.0 mL of 2.00 \times 10⁻⁶ M K₂SO₄ solution?

DIY Ion Product Constant

Will a precipitate form if 50.0 mL of 4.1 \times 10^5 mol/L AgNO_3 solution is mixed with 100.0 mL of 0.012 mol/L NaCrO_4 solution?