Торіс	Textbook Reading	Textbook Questions
Solutions and Solubility of Ionic	Section 15.1 (452-459)	
Compounds	Section 10.3 (292-294)	#33-37
Solubility Equilibrium	Section 18.3 (577-581)	#17, 18
Ion Product Constant	Section 18.3 (581-583)	#19

Chemistry 30 – Solubility Equilibrium – Unit Homework

Solutions and Solubility of Ionic Compounds

- 1. Indicate if each substance is soluble or has low solubility. Write the dissociation equation for each, using the proper arrow (\rightarrow or \rightleftharpoons)
 - a. aluminum hydroxide
 - b. potassium hydroxide
 - c. sodium sulfate
 - d. lead(II) chloride
 - e. iron(III) phosphate

- f. barium nitrate
- g. ammonium phosphate
- h. magnesium bromide
- i. tin(IV) nitrate
- j. copper(II) carbonate
- 2. For each, write the molecular, total ionic and net ionic equations for the reaction. Remember that a complete equation includes coefficients, ion charges and states. Be sure to balance each reaction.
 - a. Strontium bromide and potassium sulfate solutions combine to produce a strontium sulfate precipitate.
 - b. Silver nitrate and potassium chloride solutions combine to produce a silver chloride precipitate.
 - a. Magnesium nitrate and sodium carbonate solutions combine to make a magnesium carbonate precipitate.
 - b. Manganese(II) chloride and ammonium carbonate solutions combine to produce a manganese(II) carbonate precipitate.
- 3. For each pair of reactants, write the two possible products, then use the solubility rules to determine if a precipitate will form. If a reaction will occur, write the balanced molecular equation, including states, and the net ionic equation.
 - a. aluminum iodide + mercury(II) chloride \rightarrow
 - b. silver nitrate + potassium phosphate \rightarrow
 - c. copper(II) bromide + aluminum chloride \rightarrow
 - d. calcium acetate + sodium carbonate \rightarrow
 - e. ammonium chloride + mercury(I) acetate \rightarrow
 - f. calcium nitrate + hydrochloric acid (HCl) \rightarrow
 - g. iron(II) sulfide + hydrochloric acid \rightarrow
 - h. copper(II) hydroxide + acetic acid $(HC_2H_3O_2) \rightarrow$

Solubility Equilibrium

- 4. How does the solubility of a compound relate to its K_{sp} ?
- 5. For each compound, write a dissociation equation and a K_{sp} expression.
 - a. copper(I) chloride
 - b. lead(II) sulfate
 - c. zinc hydroxide
 - d. calcium phosphate

- 6. Calculate the K_{sp} for each of the salts whose solubility is listed below.
 - a. $[CaSO_4] = 5.0 \times 10^{-3} \text{ mol/L}$
 - b. $[MgF_2] = 2.7 \times 10^{-3} \text{ mol/L}$
 - c. $[SrF_2] = 12.2 \text{ mg}/100 \text{ mL}$ (hint: convert these units!)
- 7. For silver carbonate, iron(II) sulfide and calcium carbonate, calculate the solubility in mol/L for each of three salts. Use the Solubility Product Constants table to find K_{sp}.
- 8. Consider these slightly soluble salts:

PbS $K_{sp} = 8.4 \times 10^{-28}$

PbSO₄ $K_{sp} = 1.8 \times 10^{-8}$

 $Pb(IO_3)_2$ $K_{sp} = 2.6 \times 10^{-13}$

- a. Which is the least soluble?
- b. Calculate the solubility in mol/L for $PbSO_4$.
- c. How many grams of PbSO₄ can dissolve in 1 L of solution?
- d. Use what you know about Le Chatelier's Principle to determine how can you decrease the concentration of Pb²⁺(aq) in a saturated solution of PbSO₄ solution.
- 9. Given these slightly soluble salts:
 - AgBr $K_{sp} = 5.35 \times 10^{-13}$
 - AgCl $K_{sp} = 1.77 \times 10^{-10}$
 - AgI $K_{sp} = 8.52 \times 10^{-17}$
 - a. Put them in order from most to least soluble.
 - b. For each, calculate the mass of solid needed to make 1.0 L of a saturated solution.
- 10. For a saturated solution of silver carbonate:
 - a. Determine the concentration of silver ions.
 - b. Determine the mass of silver carbonate solid needed to make 500.0 mL of a saturated solution.

Ion Product Constant

- 11. Determine if a precipitate will form given the ion concentrations in the mixed solution.
 - a. $[Ca^{2+}] = 3.5 \times 10^{-7} \text{ M}, [SO_4^{2-}] = 1.2 \times 10^{-4} \text{ M}$
 - b. $[Ag^+] = 1.2 \times 10^5 \text{ M}, [Cl^-] = 5.1 \times 10^{-3} \text{ M}$
- 12. Determine if a precipitate will form if <u>500.0 mL of each solution</u> are mixed together.
 - a. [FeCl₂] = 4.3×10^{-7} M, [NaOH] = 8.1×10^{-10} M
 - b. [AgNO₃] = 4.2×10⁻⁴ M, [KBr] = 6.1×10⁻⁴ M
- 13. Will a precipitate form if 200.0 mL 0.00020M Ca(NO₃)₂ is mixed 300.0 mL of 0.00030M Na₂CO₃?
- 14. Will a precipitate form if 25.0 mL of 0.0020M Pb(NO₃)₂ is mixed with 25.0 mL of 0.040M NaBr?
- 15. Will a precipitate form if equal volumes of $0.00020M Ca(NO_3)_2$ is mixed with $0.00030M Na_2CO_3$?