Chemistry 30 - Solubility Equilibrium - Unit Homework

Topic	Textbook Reading	Textbook Questions
Solutions and Solubility of Ionic Compounds	Section 15.1(452-459) Section 10.3(292-294)	\#33-37
Solubility Equilibrium	Section 18.3(577-581)	$\# 17,18$
Ion Product Constant	Section 18.3(581-583)	$\# 19$

Solutions and Solubility of Ionic Compounds

1. Indicate if each substance is soluble or has low solubility. Write the dissociation equation for each, using the proper arrow $(\rightarrow$ or $\rightleftharpoons)$
a. aluminum hydroxide
b. potassium hydroxide
c. sodium sulfate
d. lead(II) chloride
e. iron(III) phosphate
f. barium nitrate
g. ammonium phosphate
h. magnesium bromide
i. $\operatorname{tin}(I V)$ nitrate
j. copper(II) carbonate
2. For each, write the molecular, total ionic and net ionic equations for the reaction. Remember that a complete equation includes coefficients, ion charges and states. Be sure to balance each reaction.
a. Strontium bromide and potassium sulfate solutions combine to produce a strontium sulfate precipitate.
b. Silver nitrate and potassium chloride solutions combine to produce a silver chloride precipitate.
a. Magnesium nitrate and sodium carbonate solutions combine to make a magnesium carbonate precipitate.
b. Manganese(II) chloride and ammonium carbonate solutions combine to produce a manganese(II) carbonate precipitate.
3. For each pair of reactants, write the two possible products, then use the solubility rules to determine if a precipitate will form. If a reaction will occur, write the balanced molecular equation, including states, and the net ionic equation.
a. aluminum iodide + mercury(II) chloride \rightarrow
b. silver nitrate + potassium phosphate \rightarrow
c. copper(II) bromide + aluminum chloride \rightarrow
d. calcium acetate + sodium carbonate \rightarrow
e. ammonium chloride + mercury (I) acetate \rightarrow
f. calcium nitrate + hydrochloric acid $(\mathrm{HCl}) \rightarrow$
g. iron(II) sulfide + hydrochloric acid \rightarrow
h. copper(II) hydroxide + acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) \rightarrow$

Solubility Equilibrium

4. How does the solubility of a compound relate to its $\mathrm{K}_{\text {sp }}$?
5. For each compound, write a dissociation equation and a $K_{\text {sp }}$ expression.
a. copper(I) chloride
b. lead(II) sulfate
c. zinc hydroxide
d. calcium phosphate
6. Calculate the $\mathrm{K}_{\text {sp }}$ for each of the salts whose solubility is listed below.
a. $\left[\mathrm{CaSO}_{4}\right]=5.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
b. $\left[\mathrm{MgF}_{2}\right]=2.7 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
c. $\left[\mathrm{SrF}_{2}\right]=12.2 \mathrm{mg} / 100 \mathrm{~mL}$ (hint: convert these units!)
7. For silver carbonate, iron(II) sulfide and calcium carbonate, calculate the solubility in mol/L for each of three salts. Use the Solubility Product Constants table to find $\mathrm{K}_{\text {sp }}$.
8. Consider these slightly soluble salts:
$\mathrm{PbS} \quad \mathrm{K}_{\text {sp }}=8.4 \times 10^{-28}$
$\mathrm{PbSO}_{4} \quad \mathrm{~K}_{\text {sp }}=1.8 \times 10^{-8}$
$\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2} \quad \mathrm{~K}_{\text {sp }}=2.6 \times 10^{-13}$
a. Which is the least soluble?
b. Calculate the solubility in $\mathrm{mol} / \mathrm{L}$ for PbSO_{4}.
c. How many grams of PbSO_{4} can dissolve in 1 L of solution?
d. Use what you know about Le Chatelier's Principle to determine how can you decrease the concentration of $\mathrm{Pb}^{2+}(\mathrm{aq})$ in a saturated solution of PbSO_{4} solution.
9. Given these slightly soluble salts:

AgBr	$\mathrm{K}_{\text {sp }}=5.35 \times 10^{-13}$
AgCl	$\mathrm{K}_{\text {sp }}=1.77 \times 10^{-10}$
AgI	$\mathrm{K}_{\text {sp }}=8.52 \times 10^{-17}$

a. Put them in order from most to least soluble.
b. For each, calculate the mass of solid needed to make 1.0 L of a saturated solution.
10. For a saturated solution of silver carbonate:
a. Determine the concentration of silver ions.
b. Determine the mass of silver carbonate solid needed to make 500.0 mL of a saturated solution.

Ion Product Constant

11. Determine if a precipitate will form given the ion concentrations in the mixed solution.
a. $\left[\mathrm{Ca}^{2+}\right]=3.5 \times 10^{-7} \mathrm{M},\left[\mathrm{SO}_{4}{ }^{2-}\right]=1.2 \times 10^{-4} \mathrm{M}$
b. $\left[\mathrm{Ag}^{+}\right]=1.2 \times 10^{5} \mathrm{M},\left[\mathrm{Cl}^{-}\right]=5.1 \times 10^{-3} \mathrm{M}$
12. Determine if a precipitate will form if 500.0 mL of each solution are mixed together.
a. $\left[\mathrm{FeCl}_{2}\right]=4.3 \times 10^{-7} \mathrm{M},[\mathrm{NaOH}]=8.1 \times 10^{-10} \mathrm{M}$
b. $\left[\mathrm{AgNO}_{3}\right]=4.2 \times 10^{-4} \mathrm{M},[\mathrm{KBr}]=6.1 \times 10^{-4} \mathrm{M}$
13. Will a precipitate form if $200.0 \mathrm{~mL} 0.00020 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is mixed 300.0 mL of $0.00030 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$?
14. Will a precipitate form if 25.0 mL of $0.0020 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is mixed with 25.0 mL of 0.040 M NaBr ?
15. Will a precipitate form if equal volumes of $0.00020 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is mixed with $0.00030 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$?
