Solubility Equilibrium Practice Test

- 1. Write the dissociation equation for calcium hydroxide and calcium chloride.
 - a. What is different about these two substances?
 - b. If you dissolved as much of each of these substances as possible in one litre of water, how would the two solutions be different?
- 2. What is a saturated solution? What happens to the solute in a saturated solution?
- 3. Identify each compound as soluble or low solubility, then write the dissociation equation.
 - a. Cu(OH)₂
 - b. Sn(NO₃)₂
 - c. NaCl
 - d. Ag_2CO_3
- 4. Write the molecular, total and net ionic equations for each pair of solutions.
 - a. copper(I) nitrate + hydrochloric acid (HCl)
 - b. ammonium carbonate + magnesium bromide
- 5. For barium sulfate, barium phosphate and barium hydroxide:
 - a. List the compounds in order from <u>most</u> to <u>least</u> soluble.
 - b. What is the concentration of a saturated solution of barium hydroxide?
 - c. What is the concentration of barium ions in a saturated solution of barium phosphate?
 - d. What is the maximum mass of barium sulfate can be dissolved in 250.0 mL of water?
- 6. Calculate the K_{sp} of $Zn(CN)_2$ if its solubility is 1.26×10^{-4} mol/L.
- 7. Will a precipitate form if 500.0 mL of 0.000185 mol/L lead(II) acetate solution is mixed with 125.0 mL of 0.00760 mol/L sodium sulfate solution?
- 8. Will a precipitate form if equal volumes of 0.00500 mol/L silver nitrate and 0.00135 mol/L sodium phosphate are mixed?
- 9. Silver sulfate has a K_{sp} of 1.2×10^{-5} . In an experiment, 0.55 mol/L silver nitrate is mixed with 0.050 mol/L sodium sulfate.
 - a. The experimenter notices that solid appears when 25 mL of silver nitrate, 100 mL of water and 188 mL of sodium sulfate are mixed. What is the experimental value of K_{sp} ?
 - b. Why would the K_{sp} calculated in the experiment be different from the theoretical value?