General Chemistry II Jasperse
Entropy, Spontaneity, and Free Energy. Extra Practice Problems
General Types/Groups of problems:

Evaluating Relative Molar Entropy for Chemicals	p1		Calculating ΔG for Reactions (Math)	p5
Evaluating ΔS for Reactions (non-math)	p2		$\Delta G, \Delta H, \Delta S$, Equilibrium, and Temperature	p6
Calculating ΔS for Reactions (Math)	p2		Answers	p 7
Entropy/Enthalpy and Spontaneity.	p4			

Key Equations Given for Test:

For weak acids alone in water: $\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \times[\mathrm{WA}]}$	For weak bases alone in water: $\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b}} \times[\mathrm{WB}]}$
$\mathrm{pZ}=-\operatorname{logZ}$ General definition for p of anything	$\mathrm{pH}+\mathrm{pOH}=14$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{HO}^{-}\right]=1.00 \times 10^{-14}$	$\mathrm{~K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=1.00 \times 10^{-14}$ for conjugate acid/base pair
For Buffer: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log [$ base $] /[$ acid $]$ Henderson-Hasselbalch Equation	$\Delta \mathrm{S}^{\circ}=\mathrm{S}^{\circ}$ (products) $-\mathrm{S}^{\circ}$ (reactants)
$\Delta \mathrm{G}^{\circ}=\mathrm{G}^{\circ}$ (products) $-\mathrm{G}^{\circ}$ (reactants)	$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ} \quad$ (T in Kelvin)

EVALUATING/RANKING STANDARD MOLAR ENTROPY (S°) FOR CHEMICALS (non-math)

1. Which of the following is in the correct order of standard state entropy?
I. Liquid water < gaseous water
II. Liquid water < solid water
III. $\quad \mathrm{NH}_{3}<\mathrm{H}_{2}$
a. I only
d. I and II only
b. II only
e. I and III only
c. III only
2. Which of the following will have the greatest standard molar entropy $\left(S^{\circ}\right)$?
a. $\quad \mathrm{NH}_{3}(\mathrm{~g})$
b. $\mathrm{He}(g)$
c. $\mathrm{C}(s$, graphite $)$
d. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
e. $\quad \mathrm{CaCO}_{3}(s)$
3. Indicate which of the following has the lowest standard molar entropy $\left(S^{\circ}\right)$.
a. $\quad \mathrm{CH}_{4}(\mathrm{~g})$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}()$
c. $\mathrm{H}_{2} \mathrm{O}(s)$
d. $\mathrm{Na}(s)$
e. $\mathrm{He}(g)$
4. Indicate which of the following has the highest entropy at 298 K .
a. $\quad 0.5 \mathrm{~g}$ of HCN
b. 1 mol of HCN
c. 2 kg of HCN
d. 2 mol of HCN
e. All of the above have the same entropy at 298 K .

EVALUATING ΔS FOR REACTIONS (non-math recognition)

5. Indicate which one of the following reactions result in a positive $\Delta S_{\text {sys }}$.
a. $\mathrm{AgNO}_{3}(a q)+\mathrm{NaCl}(a q) \leftrightarrows \mathrm{AgCl}(s)+\mathrm{NaNO}_{3}(a q)$
b. $\quad \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}_{2}(g) \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3}(a q)$
c. $\quad \mathrm{H}_{2}(g)+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{Hl}(\mathrm{g})$
d. $\quad \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}(g) \leftrightarrows 2 \mathrm{CO}(g)+\mathrm{H}_{2}(g)$
e. $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
6. Indicate which one of the following reactions results in a negative $\Delta S_{\text {sys }}$.
a. $\quad \mathrm{H}_{2} \mathrm{O}(g) \leftrightarrows \mathrm{H}_{2} \mathrm{O}(s)$
b. $\quad \mathrm{CaCO}_{3}(s) \leftrightarrows \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
c. $\quad \mathrm{CuSO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(s) \leftrightarrows \mathrm{CuSO}_{4}(s)+5 \mathrm{H}_{2} \mathrm{O}(g)$
d. $14 \mathrm{O}_{2}(g)+3 \mathrm{NH}_{4} \mathrm{NO}_{3}(s)+\mathrm{C}_{10} \mathrm{H}_{22}(l) \rightarrow 3 \mathrm{~N}_{2}(g)+17 \mathrm{H}_{2} \mathrm{O}(g)+10 \mathrm{CO}_{2}(g)$
e. $\quad \mathrm{CO}_{2}(a q) \leftrightarrows \mathrm{CO}_{2}(g)$
7. Which of the processes $A-D$ will lead to a positive change in the entropy of the system? If all of these processes lead to a positive change in the entropy of the system, select E.
a. Sodium chloride crystals form as saltwater evaporates.
b. Helium gas escapes from the hole in a balloon.
c. Stalactites form in a cave.
d. Water freezes in a freezer.
e. All of these lead to a positive change in entropy of the system, as they are all spontaneous.
8. Which of the following processes will lead to a decrease in the entropy of the system?
a. Salt crystals dissolve in water.
b. Air escapes from a hole in a balloon.
c. Iron and oxygen react to form rust.
d. Ice melts in your hand.
e. None of these lead to a negative change in the entropy of the system, as they are all spontaneous.

CALCULATING ΔS FOR REACTIONS (Math)

9. Determine ΔS for $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \leftrightarrows 2 \mathrm{HI}(g)$ given the following information.

Substance	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$
$\mathrm{H}_{2}(g)$	130.58
$\mathrm{I}_{2}(g)$	116.73
$\mathrm{HI}(g)$	206.3

a. $\quad-41.10 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
b. $\quad-165.29 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
c. $\quad+398.75 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
d. $\quad+165.29 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
e. $\quad+41.10 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
10. Determine ΔS for $\mathrm{N}_{2} \mathrm{O}_{4}(g) \leftrightarrows 2 \mathrm{NO}_{2}(g)$ given the following information.

Substance	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$
$\mathrm{N}_{2} \mathrm{O}_{4}(g)$	304.3
$\mathrm{NO}_{2}(g)$	240.45

a. $\quad+176.7 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
b. $\quad-63.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
c. $\quad+63.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
d. $\quad-50.7 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
e. $\quad-176.7 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
11. What is the entropy change to make 1 mole of SO_{3} for the reaction $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})$

Substance	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$
$\mathrm{SO}_{2}(g)$	248.2
$\mathrm{O}_{2}(g)$	205.0
$\mathrm{SO}_{3}(g)$	256.8

a. $\quad-196.4 \mathrm{~J} / \mathrm{K}$
b. $\quad+196.4 \mathrm{~J} / \mathrm{K}$
c. $-93.9 \mathrm{~J} / \mathrm{K}$
d. $\quad+93.9 \mathrm{~J} / \mathrm{K}$
e. $\quad+401.4 \mathrm{~J} / \mathrm{K}$
12. NO gas is converted to NO_{2} gas according to the following reaction, $\quad \mathrm{NO}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g)$

What is the standard entropy change when $\underline{\mathbf{0 . 5} \mathbf{~ m o l}}$ of NO gas reacts with $\underline{\mathbf{0 . 5 ~ m o l}}$ of O_{2} gas?

Substance	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$
$\mathrm{NO}(g)$	210.7
$\mathrm{O}_{2}(g)$	205.0
$\mathrm{NO}_{2}(g)$	240.0

a. $-36.6 \mathrm{~J} / \mathrm{K}$
b. $\quad-175.7 \mathrm{~J} / \mathrm{K}$
c. $-83.4 \mathrm{~J} / \mathrm{K}$
d. $\quad+83.4 \mathrm{~J} / \mathrm{K}$
e. $+36.6 \mathrm{~J} / \mathrm{K}$
13. If 3.500 g of $\mathrm{Ni}(58.69 \mathrm{~g} / \mathrm{mol})$ are reacted with excess oxygen to form nickel oxide (NiO) under standard state conditions, what is the entropy change for the reaction?

	$2 \mathrm{Ni}(s)+\mathrm{O}_{2} \leftrightarrows 2 \mathrm{NiO}(s)$
Substance	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$
Ni	182.1
O_{2}	205.0
NiO	37.99

a. $-49.3 \mathrm{~J} / \mathrm{K}$
b. $-24.7 \mathrm{~J} / \mathrm{K}$
c. $-14.7 \mathrm{~J} / \mathrm{K}$
d. $\quad+49.3 \mathrm{~J} / \mathrm{K}$
e. $-10.4 \mathrm{~J} / \mathrm{K}$
14. What is the entropy change if 4.500 g of $\mathrm{CaCO}_{3}(s)$ is placed in a container and allowed to decompose to $\mathrm{CaO}(s)$ and $\mathrm{CO}_{2}(g)$ according to the following reaction?

$$
\mathrm{CaCO}_{3}(s) \leftrightarrows \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})
$$

Substance	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$
$\mathrm{CaCO}_{3}(s)$	92.88
$\mathrm{CaO}(s)$	39.75
$\mathrm{CO}_{2}(g)$	213.6

a. $\quad+7.2 \mathrm{~J} / \mathrm{K}$
b. $\quad-160.5 \mathrm{~J} / \mathrm{K}$
c. $+35.7 \mathrm{~J} / \mathrm{K}$
d. $\quad+160.5 \mathrm{~J} / \mathrm{K}$
e. $+3.57 \mathrm{~J} / \mathrm{K}$
15. What is the standard entropy change when 10.0 g of methane reacts with 10.0 g of oxygen?

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}()
$$

Substance	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$
$\mathrm{CH}_{4}(g)$	186.2
$\mathrm{O}_{2}(g)$	205.0
$\mathrm{H}_{2} \mathrm{O}(1)$	70.0
$\mathrm{CO}_{2}(g)$	213.6

a. $\quad-121 \mathrm{~J} / \mathrm{K}$
b. $-37.9 \mathrm{~J} / \mathrm{K}$
c. $\quad-242.6 \mathrm{~J} / \mathrm{K}$
d. $-154.4 \mathrm{~J} / \mathrm{K}$
e. $-16.8 \mathrm{~J} / \mathrm{K}$

CHANGES IN ENTROPY OF UNIVERSE VS SYSTEM. Evaluating Spontaneity Considering both Entropy and Enthalpy

16. In a spontaneous process, which of the following always increases?
a. the entropy of the system
b. the entropy of the surroundings
c. the entropy of the universe
d. the entropy of the system and the universe
e. the entropy of the system, surroundings and the universe
17. Processes are always spontaneous, regardless of temperature, when \qquad (H and S refer to the system).
a. $\Delta H>0$ and $\Delta S<0$
b. $\Delta H<0$ and $\Delta S<0$
c. $\Delta H>0$ and $\Delta S>0$
d. $\Delta H<0$ and $\Delta S>0$
e. None of these is true, as temperature must always be taken into account.
18. The dissolution of ammonium nitrate in water is a spontaneous endothermic process. It is spontaneous because the system undergoes \qquad
a. a decrease in enthalpy.
d. a decrease in entropy.
b. an increase in entropy.
e. an increase in free energy.
c. an increase in enthalpy.
19. Which of the following must be true for a spontaneous exothermic process?
a. only that $\Delta S_{\text {sys }}<0$
b. only that $\Delta S_{\text {sys }}>0$
c. both $\Delta S_{\text {sys }}<0$ and the magnitude of $\Delta S_{\text {sys }}<$ the magnitude of $\Delta S_{\text {surr }}$
d. both $\Delta S_{\text {sys }}<0$ and the magnitude of $\Delta S_{\text {sys }}>$ the magnitude of $\Delta S_{\text {surr }}$
e. either $\Delta S_{\text {sys }}>0$, or else $\Delta S_{\text {sys }}<0$ but the magnitude of $\Delta S_{\text {sys }}<$ the magnitude of $\Delta S_{\text {surr }}$
20. Suppose a chemical reaction is found to be spontaneous, but with $\Delta \underline{S}_{\text {sys }}<0$. Which of the following statements must be TRUE?
a. $\quad \Delta S_{\text {surr }}<0$ and its magnitude is $<\Delta S_{\text {sys. }}$. In other words, the system loses entropy and the surroundings also lose entropy. The loss by the surroundings is less than the loss by the system.
b. $\Delta S_{\text {surr }}<0$ and its magnitude is $>\Delta S_{\text {sys. }}$. In other words, the system loses entropy and the surroundings also lose entropy. The loss by the surroundings is greater than the loss by the system.
c. $\Delta S_{\text {surr }}>0$ and its magnitude is $<\Delta S_{\text {sys }}$. In other words, the system loses entropy but the surroundings gain entropy. The gain by the surroundings is less than the loss by the system.
d. $\quad \Delta S_{\text {surr }}>0$ and its magnitude is $>\Delta S_{\text {sys. }}$. In other words, the system loses entropy but the surroundings gain entropy, and the gain by the surroundings outweighs the loss by the system.
e. an error has been made, as $S_{\text {sys }}>0$ by necessity for a spontaneous process.

FREE ENERGY AND CALCULATING $\boldsymbol{\Delta} \boldsymbol{G}$ FOR REACTIONS (Math)

21. Any reaction will be spontaneous if \qquad
a. $\Delta G_{\text {sys }}>0$
b. $\Delta G_{\text {sys }}<0$
c. $\Delta S_{\text {sys }}>0$
d. $\Delta S_{\text {sys }}<0$
e. $\Delta H_{\mathrm{sys}}<0$

From $\boldsymbol{\Delta} \boldsymbol{G}_{\text {formationn }}$

22. What is the ΔG_{rxn} for the reaction given:

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \leftrightarrows \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

Substance	$\boldsymbol{\Delta} \boldsymbol{G}_{\text {form }}(\mathbf{k J J} / \mathbf{m o l})$
$\mathrm{CH}_{4}(g)$	50.8
$\mathrm{CO}_{2}(g)$	394.4
$\mathrm{H}_{2} \mathrm{O}(g)$	-228.57

a. $\quad-50.8 \mathrm{~kJ} / \mathrm{mol}$
b. $-751 \mathrm{~kJ} / \mathrm{mol}$
c. $-113 \mathrm{~kJ} / \mathrm{mol}$
d. $-115 \mathrm{~kJ} / \mathrm{mol}$
e. $-807 \mathrm{~kJ} / \mathrm{mol}$
23. Determine ΔG_{rxn} for $\mathrm{C}_{4} \mathrm{H}_{10}(l)+13 / 2 \mathrm{O}_{2}(g) \leftrightarrows 4 \mathrm{CO}_{2}(g)+5 \mathrm{H}_{2} \mathrm{O}(g)$ given the following.

Substance	$\boldsymbol{\Delta} \boldsymbol{G}_{\text {form }}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$
$\mathrm{C}_{4} \mathrm{H}_{10}(l)$	-15.0
$\mathrm{CO}_{2}(g)$	-394.4
$\mathrm{H}_{2} \mathrm{O}(g)$	-228.57

a. $\quad-2705 \mathrm{~kJ} / \mathrm{mol}$
b. $\quad-608.0 \mathrm{~kJ} / \mathrm{mol}$
c. $-1791 \mathrm{~kJ} / \mathrm{mol}$
d. $-3457 \mathrm{~kJ} / \mathrm{mol}$
e. $\quad+608.0 \mathrm{~kJ} / \mathrm{mol}$
24. Given the following data, determine the molar free energy of combustion for propane gas, $\mathrm{C}_{3} \mathrm{H}_{8}$.

$\Delta G\left(\mathrm{C}_{3} \mathrm{H}_{8}, g\right)$	$-23.5 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G\left(\mathrm{CO}_{2}, g\right)$	$-394.4 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G\left(\mathrm{H}_{2} \mathrm{O}, g\right)$	$-105.6 \mathrm{~kJ} / \mathrm{mol}$

a. $\quad-1629.1 \mathrm{~kJ} / \mathrm{mol}$
b. $\quad-1582.1 \mathrm{~kJ} / \mathrm{mol}$
c. $\quad-476.5 \mathrm{~kJ} / \mathrm{mol}$
d. $\quad+476.5 \mathrm{~kJ} / \mathrm{mol}$
e. $\quad+1582.1 \mathrm{~kJ} / \mathrm{mol}$

From ΔH° and ΔS°

25. Hydrogen reacts with nitrogen to form ammonia $\left(\mathrm{NH}_{3}\right)$ according to the reaction

$$
3 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \leftrightarrows 2 \mathrm{NH}_{3}(g)
$$

The value of ΔH° is $-92.38 \mathrm{~kJ} / \mathrm{mol}$, and that of ΔS° is $-198.2 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$. Determine ΔG° at $25^{\circ} \mathrm{C}$.
a. $\quad+5.897 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}$
b. $+297.8 \mathrm{~kJ} / \mathrm{mol}$
c. $\quad-33.32 \mathrm{~kJ} / \mathrm{mol}$
d. $-16.66 \mathrm{~kJ} / \mathrm{mol}$
e. $\quad+49.5 \mathrm{~kJ} / \mathrm{mol}$
26. Hydrochloric acid (HCl) reacts with sodium hydroxide (NaOH) to form sodium chloride (NaCl) and water. If $\Delta H^{\circ}=-$ $56.13 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta S^{\circ}=79.11 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$, what is ΔG° for this reaction at $20^{\circ} \mathrm{C}$?
a. $\quad-79.31 \mathrm{~kJ} / \mathrm{mol}$
b. $\quad-77.73 \mathrm{~kJ} / \mathrm{mol}$
c. $-2.324 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}$
d. $\quad 79.31 \mathrm{~kJ} / \mathrm{mol}$
e. $-1638 \mathrm{~kJ} / \mathrm{mol}$

FREE ENERGY, ENTROPY, ENTHALPY, EQUILIBRIUM, and TEMPERATURE

27. A reaction is at equilibrium at a given temperature and constant pressure when \qquad
a. $\Delta S_{\mathrm{rxn}}=0$.
b. $\Delta S=0$.
c. $\Delta G_{\mathrm{rxn}}=0$.
d. $\Delta G=0$.
e. $\Delta H_{\mathrm{rxn}}=0$.
28. Which of the following statements about equilibrium are true?
I. $\quad \Delta G_{\text {sys }}=0$
II. $\Delta S_{\text {sys }}=0$
III. $\Delta S_{\text {universe }}=0$
a. I only
d. Both I and II
b. II only
e. Both I and III
c. III only
29. A reaction with a low enthalpy of reaction value is not spontaneous at low temperature but becomes spontaneous at high temperature. What are the signs for ΔH° and ΔS°, respectively?
a. $\quad+$,
b.,--
c.,-+
d.,++
e. Insufficient data is provided to answer this question.
30. The enthalpy of fusion for benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}, 78.0 \mathrm{~g} / \mathrm{mol}\right)$ is $127.40 \mathrm{~kJ} / \mathrm{kg}$, and its melting point is $5.5^{\circ} \mathrm{C}$. What is the entropy change when 1 mole of benzene melts at $5.5^{\circ} \mathrm{C}$?
a. $\quad 9.95 \mathrm{~kJ} / \mathrm{K}$
b. $\quad 35.7 \mathrm{~J} / \mathrm{K}$
c. $1809 \mathrm{~J} / \mathrm{K}$
d. $\quad 1.81 \mathrm{~J} / \mathrm{K}$
e. $\quad 127.40 \mathrm{~kJ} / \mathrm{K}$
31. The entropy of vaporization of water is $109.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$. What is the enthalpy of vaporization of water at its normal boiling point of $100^{\circ} \mathrm{C}$?
a. $\quad+10.90 \mathrm{~kJ} / \mathrm{mol}$
b. $\quad-40.66 \mathrm{~kJ} / \mathrm{mol}$
c. $\quad+3.42 \mathrm{~kJ} / \mathrm{mol}$
d. $\quad+40.66 \mathrm{~kJ} / \mathrm{mol}$
e. $\quad-10.90 \mathrm{~kJ} / \mathrm{mol}$
32. The enthalpy and entropy of vaporization of ethanol are $38.6 \mathrm{~kJ} / \mathrm{mol}$ and $109.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$, respectively. What is the boiling point of ethanol, in ${ }^{\circ} \mathrm{C}$?
a. $\quad 352^{\circ} \mathrm{C}$
b. $\quad 78.5^{\circ} \mathrm{C}$
c. $2.84^{\circ} \mathrm{C}$
d. $624^{\circ} \mathrm{C}$
e. Not enough information is given to answer the question.
33. Dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ decomposes to nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$. If $\Delta H^{\circ}=58.02 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta S^{\circ}=176.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$, at what temperature are reactants and products in their standard states at equilibrium?
a. $\quad+56.5^{\circ} \mathrm{C}$
b. $\quad+329.5^{\circ} \mathrm{C}$
c. $-272.7^{\circ} \mathrm{C}$
d. $\quad+25.0^{\circ} \mathrm{C}$
e. $\quad+98.3^{\circ} \mathrm{C}$

General Chemistry II Jasperse $\begin{aligned} & \text { ANSWERS } \\ & \text { Entropy, Spontaneity, and Free Energy. }\end{aligned}$ Extra Practice Problems

1. A	21. B
2. A	22. C
3. D	23. A
4. C	24. B
5. D	25. C
6. A	26. A
7. B	27. C
8. C	28. E
9. D	29. D
10. A	30. B
11. C	31. D
12. A	32. B
13. C	33. A
14. A	
15. B	
16. C	
17. D	
18. B	
19. E	
20. D	

