Naming Compounds Handout

IONIC COMPOUNDS versus MOLECULAR COMPOUNDS

ionic compound:

consist of cations (positive ions) and anions (negative ions)

held together by electrostatic attraction

usually metal + nonmetal(s)

- made of monatomic ions, polyatomic ions, and/or both

monatomic ions: consist of a single atom

polyatomic ions: consist of more than one atom

molecular compound:

consist of **nonmetal atoms** bonded together by

shared electrons (covalent bonding)

- acid: a molecular compound that releases

hydrogen ions (H⁺) when dissolved in water

NAMING MONATOMIC CATIONS:

Metal atoms lose valence electrons to form positively charged ions, called cations.

An ion formed from an individual atom is a monatomic (or monoatomic) cation.

- I. Groups IA to IIIA elements silver (Ag), zinc (Zn) and cadmium (Cd) form only one type of ion each:

 - Group IA elements form +1 ions: Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺
 Group IIA elements form +2 ions: Be⁺², Mg⁺², Ca⁺², Sr⁺², Ba⁺²
 Group IIIA elements form +3 ions: Al⁺³

 - silver ion = Ag⁺; zinc ion = Zn⁺²; cadmium ion = Cd⁺²

When a Group IA-IIIA element, silver, zinc, or cadmium forms an ion, it is named:

element name + ion

Na⁺ = sodium ion

 $Sr^{+2} = strontium ion$ $Zn^{+2} = zinc ion$

- II. The Stock system is used to name transition metals and other metals that form more than one ion:
 - iron (Fe) forms two ions: Fe^{+2} and Fe^{+3}
 - lead (Pb) forms two ions: Pb⁺² and Pb⁺⁴

When a a metal can form more than one ion, each ion is named:

element name (charge in Roman numerals) + ion

e.g.
$$Fe^{+2} = iron (II) ion$$

 $Fe^{+3} = iron (III) ion$

$$Pb^{+2} = lead (II) ion$$
 $Cu^{+} = copper (I) ion$
 $Pb^{+4} = lead (IV) ion$ $Cu^{+2} = copper (II) ion$

$$Cu^{+2} = copper(I) ion$$

 $Cu^{+2} = copper(II) ion$

Name each of the following monatomic cations:

$$Fe^{+3} = \underline{\text{non (III) son}}$$
 $Na^{\dagger} = \underline{\text{Sodium son}}$

NAMING MONATOMIC ANIONS:

Nonmetal atoms gain valence electrons to form negatively charged ions called anions.

When a nonmetal forms an ion, it is named:

e.g.
$$O = \mathbf{ox}$$
ygen atom $\Rightarrow O^{-2} = \mathbf{ox}$ ide ion

$$N = nitrogen$$
 atom \Rightarrow $N^{-3} = nitride$ ion

Name each of the following monatomic anions:

$$F = fluoride ion$$
 $CI = chloride ion$
 $Br = bromide ion$
 $S^{-2} = suffide ion$
 $F = iodide ion$
 $P^{-3} = phosphide ion$

NAMING POLYATOMIC IONS:

lons made up of more than one atom are polyatomic ions:

- only one polyatomic cation: NH₄[†] = ammonium ion
- many polyatomic anions: see table below

$$OH^-$$
 = hydroxide ion NO_2^- = nitrite ion $C_2H_3O_2^-$ = acetate ion

$$CN^-$$
 = cyanide ion NO_3^- = nitrate ion PO_4^{-3} = phosphate ion

$$CrO_4^{-2}$$
 = chromate ion SO_4^{-2} = sulfate ion MnO_4^{-} = permanganate ion $Cr_2O_7^{-2}$ = dichromate ion SO_3^{-2} = sulfite ion CO_3^{-2} = carbonate ion

$$Cr_2O_7^{-2}$$
 = dichromate ion SO_3^{-2} = sulfite ion CO_2^{-2} = carbonate ion

 HCO_3^- = hydrogen carbonate ion or bicarbonate ion

Name each of the following polyatomic ions:

CN = cyanide ion
$$CrO_4^{-2} = \underline{chromate ion}$$

WRITING CHEMICAL FORMULAS GIVEN INDIVIDUAL IONS

Compounds must be neutral ⇒ total +ve charge = total -ve charge

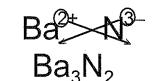
1. If the two ions have exactly opposite charges (+1 and -1, +2 and -2, +3 and -3) fi formula of the compound contains one of each ion

e.g.
$$Na^+ + Cl^- \Rightarrow NaCl$$
 $K^+ + NO_3^- \Rightarrow KNO_3$ $Ca^{+2} + S^{-2} \Rightarrow CaS$ $Ba^{+2} + SO_4^{-2} \Rightarrow BaSO_4$ $Al^{+3} + N^{-3} \Rightarrow AlN$ $Fe^{+3} + PO_4^{-3} \Rightarrow FePO_4$

Combine each pair of ions to get the formula of the compound they form:

$$NH_4^+ + F^- \Rightarrow \underline{NH_4F}$$
 $Li^+ + CN^- \Rightarrow \underline{LiCN}$

$$Sr^{+2} + CO_3^{-2} \Rightarrow \underline{SrCO_3}$$
 $AI^{+3} + PO_4^{-3} \Rightarrow \underline{AIPO_4}$


$$Na^{+} + C_2H_3O_2^{-} \Rightarrow NaG_2H_3O_2 \qquad K^{+} + OH^{-} \Rightarrow KOH$$

$$Ni^{+2} + CrO_4^{-2} \Rightarrow Ni CrO_4 \qquad Fe^{+3} + N^{-3} \Rightarrow Fe N$$

$$Cd^{+2} + SO_4^{-2} \Rightarrow \underline{CdSO_{\psi}} \quad Co^{+3} + P^{-3} \Rightarrow \underline{CoP}$$

- 2a. If two monatomic ions have different charges
 - use crossover rule to get formula of the compound
 - superscript for cation becomes subscript for anion
 - superscript for anion becomes subscript for cation
 - simplify subscripts to get lowest ratio of atoms (Note: Only the numbers cross down, not the signs!)

Ti₂O₄ is simplified!

- b. If two ions have different charges and at least polyatomic ion is involved
 - ⇒ use crossover rule to get formula of the compound
 - if more than one of polyatomic ion in formula, use parentheses
 - simplify subscripts to get lowest ratio of atoms (Note: Again only the numbers cross down, not the signs!)

NH₄ O $(NH_4)_2O$

Ca²⁺NO₃ Pb⁴⁺ $Ca(NO_3)_2$

Pb(CO₃)₂

Pb₂(CO₃)₄ is simplified!

Combine each pair of ions to get the formula of the compound they form:

$$Cu^{+}$$
 O^{-2}

$$Sn^{+4} SO_4^{-2}$$

$$K^{+}$$
 P^{-3}

$$Fe^{+3}$$
 S^{-2}

$$Ni^{+2} PO_4^{-3}$$

CHEMICAL FORMULAS AND NAMES FROM INDIVIDUAL IONS

Compounds are named from the individual ions they come from.

Name the cation and the anion, then remove "ion" from each name:

$$CO_3^{-2}$$
 = carbonate ion \Rightarrow K₂CO₃ = potassium carbonate

$$Fe^{+3} = iron (III) ion$$

$$NO_3$$
 = nitrate ion \Rightarrow Fe(NO₃)₃ = iron (III) nitrate

$$S^{-2} = sulfide ion \Rightarrow Ag_2S = silver sulfide$$

Combine each pair of ions to get the chemical formula, then name the compound:

Individual ions Compound Formula Compound Name

$$Mg^{+2}$$
 F^{-}

magnesium fluoride

$$Ni^{+2}$$
 S^{-2}

$$AI^{+3} P^{-3}$$

$$Co^{+2}$$
 NO_2^-

$$K^{+}$$
 CrO_4^{-2}

$$Fe^{+3}$$
 O^{-2}

GIVEN THE CHEMICAL FORMULA, NAME THE COMPOUND

- 1. If the metal is in Groups IA–IIIA, silver, cadmium, or zinc, then just name the metal cation and the anion:
 - e.g. NaCl ⇒ Na = sodium and Cl = chloride ⇒ sodium chloride

 Bal₂ ⇒ Ba = barium and l = iodide ⇒ barium iodide

 Al(OH)₃ ⇒ Al = aluminum and OH = hydroxide ⇒ aluminum hydroxide

 ZnSO₄ ⇒ Zn = zinc and SO₄ = sulfate ⇒ zinc sulfate
- 2. If the metal can form more than one ion,
 - a. Use reverse crossover to get the individual ions
 - Make the subscript of cation the negative charge of anion
 - Make the subscript of anion the positive charge of cation
 - b. Check to make sure the charges on the ions are correct
 - c. Name the cation and the anion, then remove "ion" from both
 - e.g. $NiBr_2 \Rightarrow Ni^{+2} = nickel (II) ion Br^- = bromide ion Is bromide's charge really -1? YES! then <math>\Rightarrow NiBr_2 = nickel (II) bromide$
 - d. If a polyatomic ion is involved, remember that more than one polyatomic is shown in parentheses—i.e. **DO NOT bring up the subscript of atoms** in a polyatomic ion to be the charge of the metal!

Cuso₄ \Rightarrow There is only ONE Cu and ONE SO₄, so get the charge for the Cu based on the SO₄. The formula is SO_4^{-2} , and there is only ONE SO_4^{-2} , so Cu's charge here must be +2 for the compound to have an overall charge of zero. $\Rightarrow Cu^{+2} = \text{copper (II) ion} \quad SO_4^{-2} = \text{sulfate ion}$

then \Rightarrow CuSO₄ = copper (II) sulfate

Give the name for each compound given its chemical formula:

Formula	Individual lons	Name of Compound		
MgCl ₂	Mg ⁺² Cl ⁻	magnesium chloride		
LiOH	Li + OH-	lithim hydroxide		
ZnCO ₃	Zn2+ CO32-	Zinc Carbonate		
K ₂ S	K+ S2-	potassium sulfide		
FePO ₄	Fe3+ PO43-	iron (III) phosphate		
SnO ₂	Sn4+ 02-	tin (IV) oxide		
CuBr ₂	Cu2+ Br	copper (11) bromide		
Ag ₃ N	Ag+ N3-	silver nitride.		
Mn(CN) ₂	Mn2+ CN-	manganese (11) Cyanide		
AgC ₂ H ₃ O ₂	Agt CaH3O2	silver acetate		

CH3000-

WRITING CHEMICAL FORMULAS GIVEN THE COMPOUND NAME

Get the individual ions from the name, then combine them using the crossover rule:

e.g. barium chloride
$$\Rightarrow$$
 barium = Ba⁺² chloride = Cl⁻

$$Ba^{+2} Cl^- \Rightarrow BaCl_2$$

aluminum sulfate
$$\Rightarrow$$
 aluminum = Al⁺³ sulfate = SO_4^{-2}

$$Al^{+3} SO_4^{-2} \Rightarrow Al_2(SO_4)_3$$

Give the name for each compound given its chemical formula:

Name of Compound	individual ions	Formula
lithium cyanide	Li [†] CN¯	LiCN
iron (III) sulfate	Fe3+ 5042-	Fe2(SO4)3
calcium iodide	Ca2+ I1-	Ca I2
tin (IV) dichromate	Sn4+ Cr2072-	Sn (Cr201)2
cadmium nitrite	Cd2+ NO2-	Cd (NO2)2
copper (II) acetate	Cu2+ CH302	Cu (C2H3O2)2
zinc carbonate	Zn2+ CO32-	ZnCO3
lead (II) phosphide	P62+ P3-	Pb 3 P2
potassium sulfite	K+ SO32-	K2SO3
cobalt (II) nitride	Co2+ N3-	Co3N2
nickel (II) permanganate	Ni2+ MnO4-	Ni (Mn04)2

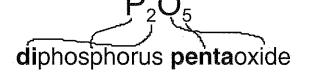
NAMING MOLECULAR COMPOUNDS

Indicate number of atoms of each element with Greek prefix before element name:

# of atoms	Greek Prefix # of atoms		Greek Prefix
1	mono (usually omitted)	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

For the **first element**:

Greek prefix + element name


For the **second element**:

Greek prefix + element name stem + "-ide"

Note:

Mono is generally omitted, except in common names like

CO = carbon monoxide

Name the following molecular compounds:

DETERMINING FORMULAS OF MOLECULAR COMPOUNDS

Use Greek prefix(es) to determine number of atoms of each element in formula.

Get elements and number of atoms of each from name:

tetraphosphorus hexasulfide

Give the formulas for each of the following molecular compounds:

nitrogen trichloride

dibromine heptaoxide

dinitrogen pentasulfide

NCl3

Br207

NaS5

DETERMINING FORMULAS AND NAMES OF ACIDS FROM IONS

Given an ion. we can get formula of acid by: adding H atoms equal to negative charge on ion we can name for acid: depending on suffix of ion name add # of H's equal to negative charge HF (aq) = hydrofluoric acid F = fluoride ion add # of H's equal to negative charge NO_2 = nitrite ion $HNO_{2 (aq)} = nitrous acid$ add # of H's equal to negative charge SO_4^{-2} = sulfate ion H_2SO_4 (aq) = sulfuric acid

Name each of the following ions, and determine the formula and name of the corresponding acid that forms from the ion.

	Name of Ion	Formula	of Acid		Name of Acid
Cl =	chloride ion		HCI	_ (aq) =	hydrochloric acid
CO ₃ ⁻² =	= <u>Carbonate</u> io	<u>^</u> ⇒ _	H2CO3	(aq) =(arbonic acid
so ₃ ⁻² =	= Sulfite ion	→ <u></u>	12503	(aq) = <u>St</u>	ulturous acid
PO4 ⁻³ =	= phosphate ion	=> _	t3 PO4	(aq) = ph	rosphonic acid
NO ₃ =	ritrate ion		+N03	_ (aq) =	nitric acid.

Name each of the following acids:

Give the formula for each of the following acids: [Don't forget to indicate (aq)!]

hydrofluoric acid = $\frac{HF}{F}$ nitrous acid = $\frac{HNO_2}{F}$ phosphoric acid = $\frac{H_3PO_4}{F}$ chromic acid = $\frac{H_3CrO_4}{F}$ hydroiodic acid = $\frac{H_3PO_4}{F}$ carbonic acid = $\frac{H_3CO_3}{F}$ sulfurous acid = $\frac{H_3PO_3}{F}$ nitric acid = $\frac{HNO_3}{F}$

PUTTING IT ALL TOGETHER:

Name each of the following compounds:

BaCl₂ barium chloride NiBr₂ <u>nickel (II) bromide</u>

HNO₃(aq) <u>nitric acid</u>. SO₂ <u>sulfur dioxide</u>.

AgF <u>silver fluoride</u> PbSe₂ <u>lead (IV) selenide</u>

NiSO₃ <u>nickel (II) Sulfite</u> PF₅ <u>phosphorus pentafluoride</u>

K₂SO₄ <u>potassium Sulfate</u> Cr(C₂H₃O₂)₃ <u>chromium (III)</u> acetate

FeP <u>iron (III) phosphide</u> Al₂(CO₃)₃ <u>aluminum Carbonate</u>

CuMnO₄ <u>copper (I) permang</u> - Cd(OH)₂ <u>Cad mium hydroxide</u>.

anate