\qquad

Science 10 - Motion - Practice Test

$$
v_{a v}=\frac{d_{2}-d_{1}}{t} \quad a_{a v}=\frac{v_{2}-v_{1}}{t} \quad v_{2}=v_{1}+a_{a v} \mathrm{t} \quad v_{1}=v_{2}-a_{a v} \mathrm{t}
$$

1. You walk 40 m east, 20 m west, 50 m east then 10 m west.
a. 60 mE
b. 120 m
c. $\quad 0.3 \mathrm{~m} / \mathrm{s}$
d. Scalar because it doesn't have a direction
2. 50400 m
3. Use the graph to answer the questions:

a. $\quad 3 \mathrm{~m} / \mathrm{s}$
b. 5 s
c. Slower ($2 \mathrm{~m} / \mathrm{s}$)
d. 0 m
4. Use the graph to answer the questions:

a. $1.9 \mathrm{~m} / \mathrm{s}$
b. $0.1 \mathrm{~m} / \mathrm{s}$
c. It is slowing down (negative acceleration)
5. A ball is dropped off a very tall building. Its initial speed is $0 \mathrm{~m} / \mathrm{s}$ and has an acceleration of 10 $\mathrm{m} / \mathrm{s}^{2}$ down.
a. $50 \mathrm{~m} / \mathrm{s}$
b. 10 s
\qquad

6. You are pushing a heavy box along the floor. You need to push really hard to get it moving, but once it starts, it slides more easily. You then push a smaller box, and find it moves much faster when you push the same amount. Explain how one of Newton's laws explains what is happening in this situation.
Inertia - harder to start an object moving (overcome inertia) than to keep it moving $\mathrm{F}=\mathrm{ma}$ - need smaller force to move the smaller box than the larger box, and with the same force the acceleration of the larger box will be less
Equal and opposite force - box pushes against you with an equal force as you push on it
