Scientific Notation

Math for Science

Science 10

Easy way to read very big and very small numbers

Examples:

A positive exponent is a big number:

$$
3.54 \times 10^{5}=354000
$$

A negative exponent is a small number:

$$
2.31 \times 10^{-3}=0.00231
$$

Converting to Scientific Notation

1. Place decimal so there is one non-zero digit on the left. Get rid of extra zeros.
2. Count spaces the decimal moved to get exponent on the 10.

- Moves left, positive exponent (big number)
- Moves right, negative exponent (little number)

Example 2: Scientific Notation

0.000002340

1. Write as a decimal with no extra zeros:
2. Find the exponent on the 10 :
3. Write the number in scientific notation:

Example 1: Scientific Notation

3346000000

1. Write as a decimal with no extra zeros:
2. Find the exponent on the 10 :
3. Write the number in scientific notation

Converting to Standard Form

Multiply two terms together.

This can also be used to check the original conversion.

Example

Expand to standard form:
a. 4.87×10^{-4}
b. 2.99×10^{5}

Comparing Values

Numbers with higher exponents on the 10 are greater:

$$
10>3 \quad-1<4 \quad-5<-2
$$

For numbers with the same exponent, numbers with a larger decimal value are greater:

$$
\begin{gathered}
6.43 \times 10^{5}>2.17 \times 10^{5} \\
1 \times 10^{-2}<3 \times 10^{-2}
\end{gathered}
$$

Example

Which is bigger?
a. 5.10×10^{-4} or 4.10×10^{4}
b. 2.0×10^{4} or 3.0×10^{6}
c. 1.68×10^{-2} or 2.88×10^{-7}
d. 6.75×10^{-6} or 8.21×10^{-6}
e. 1.86×10^{5} or 2.12×10^{5}

Common Conversions

- $1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s}$
- $1 \mathrm{~min}=60 \mathrm{~s}$
- $1 \mathrm{~km}=1000 \mathrm{~m}(1 \mathrm{~kg}=1000 \mathrm{~g})$
- $1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}(1 \mathrm{~L}=1000 \mathrm{~mL})$
- $1 \mathrm{~cm}=10 \mathrm{~mm}$
- $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$

Dimensional Analysis

- Tool for converting units OR for solving problems using units
- Each "conversion factor" is a fraction

Example:

$$
15 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=0.15 \mathrm{~m}
$$

Example 1: Dimensional Analysis

Convert 1.78 kg to g .

Example 2: Dimensional Analysis

Convert 15 mm to km. Express your answer in scientific notation.

Example 3: Dimensional Analysis

Convert 33 min to:
a. h
b. s

Example 4: Dimensional Analysis

Convert $0.452 \mathrm{~kg} / \mathrm{L}$ to:
a. g / L
b. g / mL

Example 5: Dimensional Analysis
Convert $120 \mathrm{~km} / \mathrm{h}$ to m / s.

