

Ion Formation

• **Ion**: an atom that becomes charged by gaining or losing electrons to become isoelectronic with a noble gas

Na Cl Na Cl

Ionic Bonds

- Electrostatic attraction between positive and negatively charged ions
- Very strong (strength of attraction based on Coulomb's Law)
- Formed between metal cations and nonmetal anions

Strength of Ionic Bonds

Recall Coulomb's Law:

$$F = \frac{kq_1q_2}{d^2}$$

- Stronger attractions for:
- Ions with higher charge
 Smaller ions (decreased distance between nuclei)
- Strength affects properties like melting point and solubility

Structure of Ionic Solids

 Ions arrange in <u>crystal lattice</u> structure to minimize repulsive forces and maximum attractive forces

Lattice Energy

 Measures stability of ionic solid – energy required to separate one mole of ionic solid into gaseous ions

Based on bond strength

Thinking Activity

 $Mg(OH)_2$ has a lattice energy of 2900 kJ/mol. Sr(OH)_2 has a lattice energy of 2300 kJ/mol. Explain this difference.

Metallic Bonds

 Metals form lattices of positive ions where valence electrons move freely (delocalized)

• "Electron sea model"

Alloys

 <u>Substitutional</u>: host metal atoms replaced by another metal with atoms of similar size

- <u>Interstitial</u>: smaller metal atoms fit in between the host metal atoms
- Why alloys?
- Generally stronger than pure metals
 Alters the structure of the metal to reduce
- corrosion, change conductivity/melting point, etc.

Covalent Network Solids

 Strong bonds between many similar nonmetal atoms to form a "giant molecule"

· Examples: diamond, graphene, silicon

Semiconductors:

- n-type doping replace atoms in covalent solid with higher valence atoms (increase negative charge)
- p-type doping replace with lower valence atoms (increase positive charge)

Summary: Types of Solids

Network	Metallic	Melogular	Topio
Atomic		Molecular	TOULC
Atom	Atom	Molecule	Ion
Hard High MP Insulator	Wide range of properties	Low MP Insulator	Hard High MP Insulator

Example: Types of Solids

Classify each of the following substances according to the type of solid it forms:

- 1. Gold
- 2. Carbon dioxide
- 3. Lithium fluoride
- 4. Diamond

Intramolecular Forces

- Types of bonds formed WITHIN a substance:
- Covalent (polar/non-polar)
- Ionic
- Metallic
- Depends on types of atoms (metal/nonmetal) present and their periodic properties

Intermolecular Forces

- Explains forces between particles (atoms, ions or molecules)
- Can be between identical particles (within a sample of water) or two different particles (salt in water)
- All intermolecular forces are weaker than intramolecular forces

London Dispersion Forces

- Caused by *instantaneous dipoles* caused by electron movement in a particle
- · Weak forces that exist for <u>all</u> particles
- Increases in strength with size of particles (more electrons) and when shape of particles allows them to be closer together
- Predominant force in non-polar substances/mixtures

London Dispersion Forces

This is "long term average"

on an instantaneous basis, there can be an imbalance of charges.

e" This creates a "temporary dipole" These temporary dipoles attract

Example 1: London Dispersion

At room temperature, explain why fluorine and chlorine are gases, bromine is a liquid and iodine is a solid.

Example 2: London Dispersion Explain.

Dipole-Dipole Forces

- Occurs between polar molecules
 (permanent dipoles)
- Formed by attraction between partial positive and negative charges
- Larger dipoles (more EN diff) = stronger force

Dipole-Dipole Forces

Attraction → ← Repulsion ← →

Example: Dipole-Dipole Forces

Which of H_2 and HCl would you expect to have a higher boiling point? Why?

Hydrogen Bonding Forces

 Occurs for polar molecules with hydrogen atom covalently bonded to oxygen, nitrogen or fluorine – VERY polar bond

· Similar to dipole-dipole, but stronger

Strength of IMFs

For similar-sized molecules:

Most hydrogen bonding dipole-dipole Least London disperson

Everything has LDFs, but these are insignificant if DDFs or HBFs also exist

Example: Identifying IMFs

What type of intermolecular forces govern each of the following substances?

CH₃OH (methanol)

CH₄ (methane)

CH₃Cl (chloromethane)

Which would most likely exist as a liquid at room temperature?