Name: Solutions Period: Date:	Name:	olu	tions	Period:	Date:
-------------------------------	-------	-----	-------	---------	-------

In-Class Activity: Introduction to Organic

Please hand in this assignment by the end of the class period.

1. Fill in this chart!

Element	Number of Valence Electrons	Lewis Diagram	Number of Unpaired Electrons	
Carbon	4		4	
Hydrogen	1	H.		
Nitrogen	5	. N.	3	
Oxygen	6		2	

2. Fill in this chart too! (Do your best - remember carbon is always the central atom.)

Compound	Formula	Lewis Diagram	IMFs	
Methane CH_4 $H - C - H$		H - C - H	(LF) DD HB	
Dichloromethane	CH ₂ Cl ₂	H - C - CC:	LF ØD HB	
Methylamine	CH ₃ NH ₂	H-C-N:	LF DD (HB)	
Methanol	СН₃ОН	H - C - 0 - H	LF DD (HB)	

- 3. Octane is a non-renewable compound from petroleum which is used in gasoline. Ethanol is also used in gasoline, but it is a renewable resource since it can be manufactured from biomass.
 - a. Write a balanced chemical equation for complete combustion of octane, C₈H₁₈ (l).

b. Write a balanced chemical equation for complete combustion of ethanol, C₂H₅OH (l).

4. Boiling point is a measure of the strength of the intermolecular forces in a substance. Use evidence from the data table to explain how intermolecular forces change the boiling point within a family of carbon compounds (e.g. hydrocarbons) and based on number of carbons (across a row).

Table 3 Boiling Points of Three Families of Carbon Compounds

Hydrocarbon	Boiling point (°C)	Organic halide	Boiling point (°C)	Alcohol	Boiling point (°C)
CH ₄ (g)	-164	CH₃CI(g)	-24	CH₃OH(I)	65
C ₂ H ₆ (g)	-89	C ₂ H ₅ Cl(g)	12	C ₂ H ₅ OH(I)	78
$C_3H_8(g)$	-42	C ₃ H ₇ CI(I)	47	C3H2OH(I)	97
C ₄ H ₁₀ (g)	-0.5	C ₄ H ₉ CI(I)	78	C ₄ H ₉ OH(f)	117