Name: _____ Date: _____ Date: _____ In-Class Activity: Introduction to Organic

Please hand in this assignment by the end of the class period.

1. Fill in this chart!

Element	Number of Valence Electrons	Lewis Diagram	Number of Unpaired Electrons
Carbon			
Hydrogen			
Nitrogen			
Oxygen			

2. Fill in this chart too! (Do your best – remember carbon is always the central atom.)

Compound	Formula	Lewis Diagram	IMFs	
Methane	CH₄		LF DD HB	
Dichloromethane	CH ₂ Cl ₂		LF DD HB	
Methylamine	CH ₃ NH ₂		LF DD HB	
Methanol	CH₃OH		LF DD HB	

- 3. Octane is a non-renewable compound from petroleum which is used in gasoline. Ethanol is also used in gasoline, but it is a renewable resource since it can be manufactured from biomass.
 - a. Write a balanced chemical equation for complete combustion of octane, C_8H_{18} (I).
 - b. Write a balanced chemical equation for complete combustion of ethanol, C_2H_5OH (I).

4. Boiling point is a measure of the strength of the intermolecular forces in a substance. Use evidence from the data table to explain how intermolecular forces change the boiling point within a family of carbon compounds (e.g. hydrocarbons) and between families (across a row).

Hydrocarbon	Boiling point (°C)	Organic halide	Boiling point (°C)	Alcohol	Boiling point (°C)
CH ₄ (g)	-164	CH ₃ Cl(g)	-24	CH ₃ OH(I)	65
$C_2H_6(g)$	-89	C ₂ H ₅ Cl(g)	12	C ₂ H ₅ OH(I)	78
C ₃ H ₈ (g)	-42	C ₃ H ₇ Cl(l)	47	C ₃ H ₇ OH(I)	97
C ₄ H ₁₀ (g)	-0.5	C ₄ H ₉ Cl(I)	78	C ₄ H ₉ OH(I)	117

Table 3 Boiling Points of Three Families of Carbon Compounds