Торіс	Textbook Reading		
Solutions and Molarity	Section 15.2	#14-20, 76-79	
Reaction Rates and Collision Theory	Section 17.1	#4-9, 34, 40	
Rate Determining Factors	Section 17.2	#11-13, 42-45, 47-49	
Reversible Reactions	Section 18.1 (pp. 559-563)		
Equilibrium Constant	Section 18.1 (pp. 563-568)		
ICE Tables	Section 18.3 (pp. 575-576)		
Le Chatelier's Principle	Section 18.2		

Chemistry 30 – Equilibrium – Unit Homework

Reversible Reactions

- 1. What is chemical equilibrium?
- 2. Two colourless solutions are mixed in a stoppered flask. As the reaction proceeds, the resulting solution turns red, and a colourless gas is formed. After a few minutes, no more gas is evolved but the red colour remains. What two pieces of evidence are there that equilibrium has been established?
- 3. Sketch two concentration-time graphs: one for an irreversible reaction and one for a reversible reaction. How are they different?
- 4. Why can equilibrium not exist in an open system?

Equilibrium Constant

- 5. Write equilibrium expressions for the following reversible reactions:
 - a. $2 \operatorname{NO}_2(g) \rightleftharpoons \operatorname{N}_2\operatorname{O}_4(g)$
 - b. $N_2(g) + 3 H_2(g) \Rightarrow 2 NH_3(g)$
 - c. $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$
 - d. $Ca(NO_3)_2$ (s) $\rightleftharpoons Ca^{2+}$ (aq) + 2 NO_3^{-1} (aq)
 - e. 2 HgO (s) \rightleftharpoons 2 Hg (l) + O₂ (g)
 - f. $NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$
- 6. What condition(s) of a system must be changed to affect the value of the equilibrium constant of the system?
- 7. Why are solids and pure liquids left out of an equilibrium expression?
- 8. For the equilibrium system described by 2 SO₂ (g) + O₂(g) \rightleftharpoons 2 SO₃(g), the equilibrium concentrations of SO₂, O₂ and SO₃ were 0.75 M, 0.30 M, and 0.15 M, respectively. Calculate the equilibrium constant, K_{eq}, for the reaction.
- 9. $K_{eq} = 35$ at 487°C for the equilibrium system described by:

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

If the concentrations of the PCI_5 and PCI_3 are 0.015 M and 0.78 M, respectively, what is the concentration of the CI_2 ?

10. At a given temperature, analysis of an equilibrium mixture represent below is given as: $[SO_2] = 4.0 \text{ M}, [NO_2] = 0.50 \text{ M}, [SO_3] = 3.0 \text{ M},$

[NO] = 2.0 M Find the value of K_{eq} , if the reaction is:

$$SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$$

11. At 55°C, K_{eq} = 1.15 for the reaction:

 $NO_2 (g) \Leftrightarrow N_2O_4 (g)$

- a. Write the equilibrium expression.
- b. Calculate the concentration of $N_2O_4(g)$ present in equilibrium with 0.50 mol/L of NO_2 .
- The following table gives some values for reactant and product equilibrium concentrations (in mol/L) at 700°C for the Shift reaction, an important method for the commercial production of hydrogen gas:

 $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

Trial	[CO ₂]	[H ₂]	[CO]	$[H_2O]$
1	0.600	0.600	0.266	0.266
2	0.600	0.800	0.330	0.286
3	2.00	2.00	0.877	0.877
4	1.00	1.50	0.450	0.655
5	1.80	2.00	0.590	1.20

Calculate K_{eq} for each of the five trials. Explain why the answers may be different for each trial.

ICE Tables

13. The decomposition of ammonia:

 $2NH_3(g) \Leftrightarrow N_2(g) + 3H_2(g)$

A vessel contains 1.00 mol/L of ammonia and is allowed to proceed to equilibrium. When the reaction stops, the concentration of ammonia is 0.87 mol/L.

- a. What is the equilibrium concentration of hydrogen gas?
- b. What is the equilibrium constant for the reaction?
- 14. For the following reversible reaction:

 $2NO\left(g\right)\leftrightarrows N_{2}\left(g\right)+O_{2}\left(g\right),\,K_{eq}=0.185$

- a. Write the expression for the equilibrium constant of this reaction.
- b. Create an ICE table to show what will happen to the concentrations if 1.45 moles of **each** nitrogen gas and oxygen gas are introduced into a container that has a volume of 6.00 L. Don't solve!
- 15. A mixture of 3.31 mol of A, 4.33 mol of B and 5.95 mol of C is added into a 1.00-L container and allowed to reach equilibrium. At equilibrium, the number of moles of B is found to be 6.16. The reaction proceeds as follows:

$$A(g) \rightleftharpoons 3B(g) + 2C(g)$$

- a. What are the equilibrium concentrations of A and C?
- b. What is the equilibrium constant?
- 16. Gas X_2 reacts with gas Y_2 :

$$X_2 + Y_2 \leftrightarrows 2 XY$$

0.50 mole each of X_2 and Y_2 are placed in a 1.0 litre vessel and allowed to reach equilibrium at a given temperature. The equilibrium concentration of XY is found to be 0.025 mol/L. What is the equilibrium constant?

17. In the reversible reaction, where K_{eq} = 64 at 525°C:

 $2 \text{ HBr } (g) \rightleftharpoons H_2 (g) + Br_2 (g)$

If 0.500 mol/L of HBr is put into a fixed volume container and allowed to reach equilibrium, what are the equilibrium concentrations of all of the species?

18. For the following reversible reaction, where K_{eq} = 10.0 at 600°C:

 $\mathsf{CO}\;(\mathsf{g}) + \mathsf{H}_2\mathsf{O}\;(\mathsf{g}) \leftrightarrows \mathsf{CO}_2\;(\mathsf{g}) + \mathsf{H}_2\;(\mathsf{g})$

Determine the equilibrium concentrations of all of the species if 0.100 mol/L of CO and H_2O are put into a fixed volume container and allowed to reach equilibrium.

Le Chatelier's Principle

- 19. What is Le Chatelier's Principle?
- 20. What factors can alter the equilibrium position in a chemical reaction?
- 21. Does changing the amount of a solid or liquid in a system have an effect on the equilibrium? Why or why not?
- 22. Balance each of the following reactions. Then, predict what will happen when the reaction pressure is increased in each system.
 - a. $CO_2(g) + H_2O(I) \rightleftharpoons C_6H_{12}O_6(s) + O_2(g)$
 - b. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

c.
$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

23. Balance the reaction below.

 $NO_2(g) \rightleftharpoons N_2O_4(g) \Delta H = -58.0 \text{ kJ/mol}$ Predict the effect of each of the following changes on this system at equilibrium (drive forward reaction, drive reverse reaction, no effect).

- a. Add N₂O₄
- b. Remove NO₂
- c. Decrease the pressure
- d. Decrease the temperature
- 24. Consider the reaction:

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + heat$ Determine the effects of the following stresses on the equilibrium. State whether the equilibrium will shift to the left, to the right or not at all.

- a. Increase [N₂]
- b. Decrease [NH₃]
- c. Decrease [H₂]
- d. Increase temperature
- e. Decrease total pressure
- f. Increase pressure
- 25. Consider the solution of barium sulfate, which has low solubility:

$$BaSO_4 (s) \rightleftharpoons Ba^{2+} (aq) + SO_4^{2-} (aq)$$

Determine how the equilibrium will shift in each situation:

a. Add Ba²⁺ ions

- b. Remove SO₄²⁻ ions
- c. Add BaSO₄ (s)
- 26. Consider the reaction:

 $N_2O_4(g)$ + heat \Rightarrow 2 NO₂ (g) $K_{eg} = 0.87$ at 55°C

What is the effect of each of these changes upon the concentration of N_2O_4 at equilibrium?

- a. Increasing the temperature
- b. Decreasing the pressure
- c. Adding more NO_2 (g) to the system,
- d. Adding He gas to the container (fixed volume)
- 27. For the following reversible reaction:

 $CO(g) + H_2O(g) \leftrightarrows CO_2(g) + H_2(g)$

- a. Write the expression for the equilibrium constant of this reaction.
- b. Find the equilibrium constant for this expression. At 588°C, the equilibrium concentrations of the compounds are:
- [CO] 2.00 mol/L [CO₂] 3.52 mol/L
- [H₂O] 0.241 mol/L [H₂] 4.30 mol/L
 - c. If the concentration of water in the system is increased to 3.50 mol/L, which way will the equilibrium shift?
 - d. If the equilibrium concentration of water is 1.58 M, what are the equilibrium concentrations of the other species? (The initial concentrations are as shown above, and 3.50 mol/L for water.)

Reaction Quotient

28. For the reversible reaction:

- $CO(g) + H_2O(g) \leftrightarrows CO_2(g) + H_2(g)$
- a. Write the expression for the equilibrium constant of this reaction.
- b. Find the equilibrium constant for this expression. The equilibrium concentrations at 861°C are:
 - [CO] 2.00 mol/L
 - [H₂O] 0.241 mol/L
 - [CO₂] 3.52 mol/L
 - [H₂] 4.30 mol/L
- c. If a 10.0 L vessel has 2.50 mol of CO and H_2O and 5.00 mol of CO_2 and H_2 at 861°C, which way will the reaction shift?

d. Using the values from part c, create an ICE table for this system, but do not solve it.

29. At 520°C, K_{eq} is 0.0156 for:

 $2 \text{ HI} \leftrightarrows \text{H}_2 + \text{I}_2$

0.800 mol of each HI, I_2 and H_2 are placed in a 2.00 L container and allowed to come to equilibrium at 520°C. Which way will the reaction proceed to equilibrium?

30. For the reversible reaction:

 $COBr_2(g) \rightleftharpoons CO(g) + Br_2(g)$ K_{eq} is 0.190 at a certain temperature. If you combine 2.00 mol of <u>each</u> substance in a 1.00L flask, which way will the reaction proceed to reach equilibrium?

31. For the reversible reaction:

FeO (s) + CO (g) \rightleftharpoons Fe (s) + CO₂ (g) K_{eq} is 0.560 at a certain temperature. If you start with 0.5 g of both FeO and Fe in a 5.00 L reaction vessel, then add 4.30 mol of CO and 2.12 mol of CO₂, which of the solids will you have more of when equilibrium is reached?

32. One mole of NH_3 was injected into a 1 L flask at a certain temperature. The equilibrium mixture was then analyzed and found to contain 0.300 moles of H_2 .

$$2 \text{ NH}_3 \leftrightarrows \text{N}_2 + 3 \text{ H}_2$$

- a. Calculate the concentration of each species at equilibrium.
- b. Calculate the equilibrium constant for this system at this temperature and pressure.
- c. Which way would the equilibrium shift if 0.600 mol of $H_{2(g)}$ were added to the flask?
- d. How would the equilibrium constant be affected if the pressure of this system were suddenly increased?
- 33. Determine which way the reaction will shift given the initial concentrations.
 - a. C_2H_5OH (aq) + CH_3COOH (aq) \Rightarrow $CH_3COOC_2H_5$ (aq) + H_2O (g), $K_{eq} = 2.30$ $[C_2H_5OH] = 0.450$ M, $[CH_3COOH] = 1.21$ M, $[CH_3COOC_2H_5] = 0.986$ M, $[H_2O] = 3.21$ M
 - b. $2NH_3 (g) \Leftrightarrow N_2 (g) + 3H_2 (g), K_{eq} = 2.63 \times 10^{-9}$ [NH₃] = 10.3 M, [N₂] = 0.221 M, [H₂] = 0.01 M