Equilibrium Summary Problems

1. In an experiment for this reaction at 2000 K:

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

The equilibrium values of each substance are as follows:

 $[H_2] = 0.20 \text{ M}$ $[CO_2] = 0.30 \text{ M}$

 $[H_2O] = [CO] = 0.55 M$

- a. Calculate the value of K_{c} for the reaction at 2000 K.
- b. Determine $K_{\mbox{\tiny p}}$ for this system.
- c. When the system is cooled from 2000 K to a lower temperature, 30% of the CO is converted back to CO_2 . Determine K_c at this temperature. Is this reaction endothermic or exothermic?
- d. In a different experiment, 0.50 mol of H_2 is mixed with 0.50 mole of CO_2 in a 3.0 L reaction vessel at 2000 K. Calculate the equilibrium concentration of CO at this temperature.
- 2. For the reaction:

$$C(s) + CO_2(g) \rightleftharpoons 2 CO(g)$$

Solid carbon and carbon dioxide gas at 1160 K were placed in a rigid 2.00 L container, and the reaction shown above occurred. As the reaction proceeded, the total pressure in the container was monitored. When equilibrium was reacted, there was still some carbon remaining in the container. Results are:

Time (hours)	Total Pressure of Gasses (atm)
0.0	5.00
2.0	6.26
4.0	7.09
6.0	7.75
8.0	8.37
10.0	8.37

- a. Write the K_p expression.
- b. Use ideal gas law to determine the initial number of moles of CO₂ placed in the vessel.
- c. If the value of K_p is 27.87, determine the partial pressure of each gas in the system at equilibrium.
- d. In another experiment involving the same reaction, a rigid 2.00 L container initially contains 10.0 g of C (s), plus CO (g) and CO₂ (g), each at a partial pressure of 2.00 atm at 1160 K. Determine whether the partial pressure of CO_2 will increase, decrease or remain the same as the system approaches equilibrium.

Name: _____

Date: ___

3. Determine the effect of each stress on the reaction system:

 $CaCO_3$ (s) + CO_2 (g) + H_2O (l) + heat \Rightarrow Ca^{2+} (aq) + 2 HCO_3^{-} (aq)

- a. Adding CaCO₃ (s)
- b. Removing Ca²⁺ (aq)
- c. Removing CO₂ (g)
- d. Adding NaHCO₃ (s)

- e. Adding Ne (g)
- f. Increasing temperature
- g. Decreasing volume
- h. Adding a catalyst
- 4. A saturated solution is prepared by adding excess PbI_2 (s) to distilled water to form 1.0 L of solution at 25°C. The concentration of Pb^{2+} (aq) in the saturated solution is found to be 1.3 $\times 10^{-3}$ M.
 - a. Write the dissociation equation for lead(II) iodide.
 - b. Write the equilibrium constant expression for the equation.
 - c. Calculate the molar concentration of I^{-} (aq) in the solution.
 - d. Calculate the value of the equilibrium constant, K_{sp} .
 - e. If 2.0 L of a saturated solution is prepared at 25°C, what would be the molar concentrations of Pb^{2+} (aq) and I⁻ (aq)?
 - f. Solid NaI is added to the saturated solution of PbI_2 . Assuming the volume is constant, will the concentration of Pb^{2+} increase, decrease or stay the same?
- 5. The value of K_{sp} for BaCrO₄ is 1.2×10^{-10} . Determine if a precipitate will form when a 0.500 L sample of 8.2×10^{-6} M of Ba(NO₃)₂ is added to 0.500 mL of 8.2×10^{-6} M Na₂CrO₄ (aq).
- 6. A solution is made so that $[Zn^{2+}] = 0.00250$ M and $[Ag^+] = 0.0570$ M. K_{sp} for ZnF₂ is 4.8 × 10⁻⁷ and for AgF is 7.6 × 10⁻⁸.
 - a. Which will precipitate first? At which [F-] will it begin to precipitate?
 - b. What is the maximum [F⁻] that can be made to precipitate almost all of one and none of the other?
 - c. What is the concentration of the less soluble ion under the conditions specified in b.?

Solutions			
1a. 5.0	3a. no change	4a. PbI_2 (s) \Rightarrow Pb^{2+} (aq) +	5. no
1b. 5.0	3b. right	2I ⁻ (aq)	
1c. 0.87; endothermic	3c. left	4b. K _{sp} = [Pb ²⁺][I ⁻] ²	6a. AgF; 1.3 × 10 ⁻⁶ M
1d. 0.12 M	3d. left	4c. 2.6×10^{-3} M	6b. 1.4 × 10 ⁻² M
	3e. no change	4d. 8.8 \times 10 ⁻⁹	6c. 5.5 × 10 ⁻⁶ M
2a. $K_p = P^2_{CO}/P_{CO2}$	3f. right	4e. the same (1.3×10^{-3})	
2b. 0.105 mol	3g. right	M and 2.6 \times 10 ⁻³ M)	
2c. P _{CO2} = 1.63 atm	3h. no change	4f. decrease (adding I^{-})	
2d. decrease			