Atomic Structure

Waves Characteristics

Electromagnetic Radiation

- Energy travels through space by electromagnetic radiation
- e.g. x-rays, microwaves, radiant heat
- Has wave-like properties and particlelike properties
- All travels at the speed of light, $2.998 \times$ $10^{8} \mathrm{~m} / \mathrm{s}$

Wave Characteristics

- Wavelength (λ, lambda): distance between two consecutive peaks or troughs on a wave (m)
- Frequency (v): number of wave cycles past a certain point per unit time $(\mathrm{Hz}$, Hertz or cycles/s)

Wave Nature of Light

- Frequency and wavelength are inversely proportional
- Since speed of light is constant, as frequency increases, wavelength decreases

$$
c=\lambda \nu
$$

- Higher frequency also means more energy

Example 1: Light as a Wave

- Which wave below has a higher frequency?
- If one wave represents visible light, and the other represents infrared radiation, which is which?
- Which has a higher energy?

Electromagnetic Radiation

Example 2: Light as a Wave

- The yellow light given off by sodium vapour lamps, used for public lighting, has a wavelength of 589 nm . What is the frequency of this radiation?

Particle Nature of Light

- Phenomena unexplained by wave behaviour:

1. Emission of light from hot objects (blackbody radiation)
2. Emission of electrons from metal surfaces struck by light (photoelectric effect)
3. Emission of light from electronically excited gas atoms (emission spectra)

Blackbody Radiation

- When solid objects are heated (e.g. electric stove burner, incandescent light bulb), they emit radiation
- Wavelength (colour) depends on temperature of object (kinetic energy)
- Energy released/absorbed can only be done in specific quantities (whole number multiples), called quanta

Analogy of Quantized Energy

- Potential energy walking up stairs
- Your energy increases discretely as you climb a staircase - can only step on individual stairs, not between

Where:
ΔE is the energy change in a system in J, Joules
n is an integer ($1,2,3 . .$.)
h is Planck's constant, $6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
v is the frequency in Hz , or $1 / \mathrm{s}$

Example: Planck's Constant

Determine the quantum (increment of energy) that can be emit by red light with a wavelength of 7.50×10^{2} nm .

Photoelectric Effect

- Light strikes the surface of some metals, causing an electron to be ejected
- Light must have sufficient energy to eject an electron (short wavelength)
- Energy hitting the surface behaves like a particle, or energy packet, called a photon
- Energy of one photon is given by:

$$
E=h v=\frac{h c}{\lambda}
$$

Photoelectric Effect

Example: Energy of a Photon

Calculate the energy of one photon of yellow light with a wavelength of 589 nm .

Mass of Photons

- For an object not travelling at the speed of light, De Broglie suggested:

$$
m=\frac{h}{\lambda \mathrm{v}}
$$

- For a photon, v is the speed of light.

Wavelength of Matter

- Massive objects have smaller wavelengths and vice versa
- A beam of electrons can be diffracted like light waves
- This means any moving particle has an associated wavelength
- All matter has particulate and wave properties

Example: Wavelength

Compare the wavelength for an electron (mass $=9.11 \times 10^{-31} \mathrm{~kg}$) travelling at a speed of $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ with that for a ball $($ mass $=0.10 \mathrm{~kg})$ travelling at $35 \mathrm{~m} / \mathrm{s}$.

Bohr Model for Hydrogen

- Single electron - limited to certain energy values ($\mathrm{n}=1,2,3 \ldots$)
- n is the principal quantum number
- Most stable state $=$ ground state $(\mathrm{n}=1)$
- Energy (photons) supplied to atom moves electron to higher energy level = excited state
- Excited electron releases photon when it drops back down to ground state

Bohr Model + Line Spectra

- Line spectra is formed from the movement of electrons between quantized energy states
- If an electron moves from higher to lower E states, photon is emitted and emission line is observed

Bohr Model for Hydrogen

Bohr Equation

Calculate energy required to move an electron from one energy state to another, or to remove it completely, for hydrogen:

$$
\Delta E=-2.178 \times 10^{-18}\left(\frac{1}{n_{\text {final }}^{2}}-\frac{1}{n_{\text {initial }}^{2}}\right)
$$

Example 1: Bohr Equation

For an electron in an hydrogen atom, calculate the energy needed to move it from $\mathrm{n}=1$ to $\mathrm{n}=3$. What is the wavelength of this light? Is it absorbed or emitted?

Bohr Model Limitations

- Great for explaining \mathbf{H}, but not as good for other spectra
- Electron does not orbit the nucleus in a fixed path

Example 1: Bohr Equation

For an electron in an hydrogen atom, calculate the energy needed to remove it from $\mathrm{n}=1$.

Quantum Mechanical Model

- Impossible to determine electron location and velocity (Heisenberg Uncertainty Principle)
- Describes energy of electron precisely, but location in terms of probabilities
- Schrodinger developed wave functions electron probability density to show where electrons would likely be found around the nucleus

Orbitals

- Electrons don't follow specific orbits
- Each Schrodinger wave function is an orbital, which is a specific distribution of electron density in space (probability)
- Each has characteristic energy and shape

Quantum Numbers

1. Principal quantum number, n

- Integer values $1,2,3 .$.
- Increases for larger orbitals - electrons further from the nucleus
- Higher energy electrons for larger n

2. Angular momentum quantum number, 1

- 0 to $\mathrm{n}-1$
- Number corresponds to a letter, which designates a shape
- $0=\mathrm{s}, 1=\mathrm{p}, 2=\mathrm{d}, 3=\mathrm{f}$

Thinking Activity!

Each unique configuration of n, l and m_{1} corresponds to one orbital.
For each value of n from 1 to 4 , determine:
Possible values of 1
Subshell designation
Possible values of m_{1}

- Number of orbitals in subshell

Total number of orbitals in shell

Orbital Shapes

- s - spherical, and size increases with n; no electrons at nodes

Orbital Shapes

- p - one plane that slices through nucleus and divides into two halves; no electrons on nodal plane; three orientations

Orbital Shapes

- d - two planes that slice through nucleus and divides into four sections; five orientations

Electron Spin

- Final quantum number, m_{s}, accounts for spin of electron
- Determined due to interactions of electrons with magnetic field
- Can be $-1 / 2$ or $+1 / 2$

Orbital Shapes

- f - three planes that slice through nucleus and divides into eight sections; seven orientations

Pauli Exclusion Principle

- Only two electrons can occupy any orbital
- Must have opposite spins (different m_{s})

Aufbau Principle

- electrons occupy the lowest energy orbitals first, one at a time

Orbitals

Hund's Rule

- Single electrons with same spin must occupy each equal energy orbital before a second electron can be in an orbital

1.

2.

3.
\square
4.
5. $\uparrow \uparrow|\uparrow \downarrow| \uparrow$
6.
$\uparrow \downarrow|\uparrow \downarrow| \uparrow \downarrow$

Thinking Activity!

Fill this orbital diagram for calcium.

Magnetism

- Magnets have positive and negative poles - opposites attract/likes repel
- Diamagnetic - not magnetic, when all electrons are paired in orbitals
- Paramagnetic - magnetic, unpaired electrons in orbitals

Electron Configuration

- Explains arrangement of atoms in orbitals when they are in lowest possible energy state (ground state)
- Can be in atoms or ions
- Written as a list of orbitals, in order (see Aufbau)

Electron Configuration of
Hydrogen

15 Type of orital (subshell)

Examples: Electron Configuration	
H	B
Na	Cl
Ag	Sn

Noble Gas Configuration

- Write the noble gas from the period above in square brackets, then continue electron configuration from that point
- Example:
$\operatorname{Mg}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}\right)$ becomes:
$[\mathrm{Ne}] 3 \mathrm{~s}^{2}$

Examples: Noble Gas Configuration Ti

Cd

Cl

Exceptions to Aufbau

- Some elements fill or half-fill a higher energy orbital from a lower energy orbital
- Commonly, electrons will drop from an sorbital to the d-orbital

Examples: Aufbau Exceptions Cu

Cr

Valence and Core Electrons

- Valence electrons are those in highest energy level (n) - available to bond
- Core electrons are inner electrons in full, stable orbitals that are unavailable for bonding

