PHYSICAL SCIENCE 20 (PRE-AP CHEMISTRY)

UNIT THREE

STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS

CAN...

- Balance equations using an understanding of the law of conservation of mass.
- Write (and balance) equations, based on descriptions.
- **Classify reactions** as combustion, decomposition or synthesis.
- Calculate formula weights of elements, molecules or compounds.

CAN..

- Convert between number of particles, mass or moles using conversion factors.
- Determine the empirical formula of a given compound.
- Use stoichiometry to determine mass of products, and required number of moles for a given reaction.

STOICHIOMETRY

- Chemical reactions are taking place around us all the time.
- Some are easy to see because of indicators like color change while others are happening inside us all the time without our knowledge.
- Stoichiometry is the study of chemical reactions, specifically how the quantity of substances are consumed or produced in relation to each other.

CHEMICAL EQUATIONS

• We represent chemical reactions using a chemical equation.

$$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$$

- We read the sign + as reacts with, and the \rightarrow as produces.
- The substances on the left hand side of the → are considered to be reactants, while the products are shown on the right.

BALANCING CHEMICAL REACTIONS

- Atoms are neither created nor destroyed, this means the number of atoms on the reactant side must equal the number of atoms on the product side.
- To do balance reactions, count the number of atoms and change by altering the coefficient at the front.

EXAMPLE: COUNTING ATOMS

- How many atoms of Mg, O and H are represented in the chemical formula 3 Mg(OH)₂?
- How many atoms of Al, C, H, and O are in the compound Al(CH₃COO)₃?

BALANCING EQUATIONS

- Once the reactants and products are known we can write an unbalanced chemical reaction.
- Changing the coefficient IS NOT THE SAME as changing a subscript. You can ONLY change the coefficient.

EXAMPLE: INTERPRETING CHEMICAL EQUATIONS

 The following diagram represents a chemical reaction in which the blue spheres are nitrogen, while the red are oxygen. (a) write the chemical formula for the reactants and products, (b) write a balanced chemical reaction, (c) is this diagram consistent with the law of conservation of mass?

INDICATING THE STATES

- Symbols indicating the physical state of the reactants and products are often shown.
- We use (g), (l), (s), and (aq) for gas, liquid, solid and aqueous (water) solution respectively.

 $CH_4(g) + O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

• For reactions that involve the addition of heat, the symbol Delta (Δ) is used over the \rightarrow symbol.

EXAMPLE: BALANCING

- Balance the following equations:
- Na(s) + $H_2O(I) \rightarrow NaOH(aq) + H_2(g)$
- Fe(s) + $O_2(g) \rightarrow Fe_2O_3(s)$
- $C_2H_2(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
- Al(s) + HCl(aq) \rightarrow AlCl₃(aq) + H₂(g)

PATTERNS OF CHEMICAL REACTIVITY

- There are three* basic types of reactions to be covered in this unit: combination (synthesis), decomposition and combustion.
- Knowing patterns with reactivity allows us to predict the products of a reaction with knowing only the reactants.

COMBINATION & DECOMPOSITION

 In combination reactions, two or more reactants combine to create a single product.

 $Mg(s) + O_2(g) \rightarrow 2MgO(s)$

- When magnesium reacts with oxygen, it loses electrons and forms Mg²⁺ while oxygen gains electrons to form O²⁻. They 'bond' and form the compound MgO.
- $\scriptstyle \bullet$ All combination reactions follow the form A + B \rightarrow C

DECOMPOSITION

- In a decomposition reaction, a single reactants breaks down into two or more other substances.
 CaCO₂(s) → CaO(s) + CO₂(g)
- Carbonates (XCO_3) will break down into an oxide (XO) and carbon dioxide (CO_2)
- Chlorates (XCIO₃) will break down into a binary compound (XCI) and
- Metal hydroxides (MOH) will break down to an oxide (MO) and
- Metal hydroxides (MOH) will break down to an oxide (MO) and water.

EXAMPLE: PREDICTING PRODUCTS

- Write the balanced chemical equations for the following chemical descriptions:
- the reaction between lithium metal and fluorine gas
- a reaction that occurs when solid barium carbonate is heated.

COMBUSTION REACTIONS

- Combustion reactions are rapid reactions that involve a flame.
- \bullet Often the result of hydrocarbons (C_xH_y) burning in the presence of oxygen (O_2)
- \bullet All hydrocarbons produce CO_2 and H_2O. $C_x H_y(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

EXAMPLE: COMBUSTION

- Predict the products of the following reactions:
- Ethane combusts when ignited in the presence of oxygen gas.
- Propanol (an alcohol substituted propane) undergoes combustion when ignited in the presence of oxygen.

EXAMPLE: CLASSIFICATION

- A piece of silver will react chemically with oxygen when it is heated
- Liquid octane (C₈H₁₈) is burned completely in oxygen gas
- Chlorine gas is bubbled through a solution of sodium bromide
- Rubidium carbonate decomposes when heated above 100 C.
- Solid magnesium hydroxide breaks down when subjected to UV light
- Crystalline bismuth(III) oxide decomposes with heat
- Heptane is a flammable hydrocarbon above 30C.
- Crystalline aluminium chlorate is heated until it decomposes

EXAMPLE: PREDICTING

- Solid silver will react chemically with oxygen when it is heated
- Chlorine gas is bubbled through a solution of sodium bromide
- Solid magnesium hydroxide breaks down when put in UV light
- Heptane is a flammable hydrocarbon above 30C.

FORMULA WEIGHTS

- Chemical formulas and chemical equations have a quantitative aspect, that is, they represent precise quantities.
- Similarly, the coefficients in a balanced chemical equation represent a quantity of reactants and products.
- How, if atoms are so small, can we perform a reaction with the correct number of atoms?

FORMULA AND MOLECULAR WEIGHT

 The formula weight of a substance is the sum of atomic weights of the atoms in the chemical formula of the substance.

THE MOLE CONCEPT

 \bullet For example, the formula weight of sulfuric acid (H_2SO_4) is 98.1 amu:

FW of H2SO4 = 2(AW of H) + (AW of S) + 4(AW of O)

= 2(1.0amu) + 32.1 amu + 4(16.0 amu)

= 98.1 amu

MOLECULAR WEIGHT

- If the chemical formula is that of an element, it is simply the value from the PT.
- If the chemical formula is a molecule it is called the molecular weight (it is calculated the same way).
 - What is the MW of glucose? (C₆H₁₂O₆)

EXAMPLE: FORMULA WEIGHTS

- Calculate the formula weight of:
- Sucrose (C₁₂H₂₂O₁₁) [table sugar]
- Calcium nitrate, Ca(NO₃)₂
- Ruthenium(III) dihydrogen phosphate

PERCENTAGE COMPOSITION

- Chemists must sometimes calculate the percentage composition of a compound – how much each element contributes to the mass of the entire compound.
 - This test can be useful to determine if a white powder is sugar, salt or cocaine.

 $\% \ composition = \frac{(number \ of \ atoms \ of \ element)(atomic \ weight \ of \ element)}{formula \ weight \ of \ substance} \times 100\%$

EXAMPLE: PERCENTAGE COMPOSITION

 Calculate the percentage of carbon, hydrogen and oxygen (by mass) in sucrose (C₁₂H₂₂O₁₁).

EXAMPLE: PERCENTAGE COMPOSITION

 Calculate the percentage of nitrogen, by mass, in calcium nitrate.

AVOGADRO'S NUMBER

6.02 × 10²³ How big is it?

THE MOLE

- When we buy eggs, we buy a dozen (12).
- When we buy shoes, they come in a pair (2).
- When we count atoms we use a mole which is based on 12 g of isotopically pure carbon-12. This number is precisely 6.0221421×10^{23}
- We call this number (rounded to 6.02×10^{23}) Avogadro's number (N_A) in honor of the scientist (Amedeo Avogadro) who discovered it.

THE MOLE

- This number, sometimes written as 6.02×10^{23} mol⁻¹ reminds us that any collection of objects that is 6.02×10^{23} is considered to be a mole.
 - 1 mol ^{12}C atoms = 6.02 \times 10 23 ^{12}C atoms

1 mol H₂O molecules = 6.02×10^{23} H₂O molecules

1 mol NO₃⁻ ions = 6.02×10^{23} NO₃⁻ ions

EXAMPLE: THE MOLE

- Without using a calculator, arrange these samples in order of increasing carbon atoms:
 - a.12g ¹²C
 - b. 1.5 mol. of C₂H₂
 - c.9 × 10²³ molecules of CO₂

EXAMPLE: THE MOLE

- Calculate the number of H atoms in 0.350 mol of $C_6H_{12}O_6$.
- Determine the number of oxygen atoms in 0.125 mol of calcium nitrite

MOLAR MASS

- A dozen is the same number, 12, whether we have a dozen eggs or a dozen elephants.
- While the number of atoms in a mole is the same, the mass is not.
- Remember that one atom of carbon-12 is 12 amu, while one atom of magnesium-24 is 24 amu.
- Because one mole always contains the same number of atoms, this means that one mole of magnesium must weigh twice as much – 24g.

THE MOLE

- The atomic weight of an element is atomic mass units is numerically equal to the mass in grams of 1 mol of that element.
- Chlorine has an atomic weight of 35.5 amu \rightarrow 1 mol of Cl has a mass of 35.5 g.
- Au has an atomic mass of 197 amu \rightarrow 1 mol of Au has a mass of 197 g.
- For other kinds of substances (formula weight, molecular weight) the relationship is the same.

EXAMPLE: MOLAR MASS

- Determine the molar mass of the following:
 - A molecular of oxygen gas
 - The formula unit of sodium chloride
 - An ion of nitrate

DISCUSSION

- A.Which has more mass, a mole of water (H₂O) or a mole of glucose (C₆H₁₂O₆)?
- B. Which contains more molecules, a mole of water or a mole of glucose?

MOLE RELATIONSHIPS

Name of Substance	Formula	Formula Weight (amu)	Molar Mass (g/mol)	Number and Kind of Particles in One Mole
Atomic nitrogen	N	14.0	14.0	6.02×10^{23} N atoms
Molecular nitrogen	N ₂	28.0	28.0	$\begin{cases} 6.02 \times 10^{23} N_2 \text{ molecules} \\ 2(6.02 \times 10^{23}) \text{ N atoms} \end{cases}$
Silver	Ag	107.9	107.9	6.02×10^{23} Ag atoms
Silver ions	Ag ⁺	107.9*	107.9	$6.02 \times 10^{23} \text{ Ag}^+ \text{ ions}$
Barium chloride	BaCl ₂	208.2	208.2	$\begin{cases} 6.02 \times 10^{23} \text{ BaCl}_2 \text{ formula units} \\ 6.02 \times 10^{23} \text{ Ba}^{2+} \text{ ions} \\ 2(6.02 \times 10^{23}) \text{ CI}^- \text{ ions} \end{cases}$

EXAMPLE: MOLAR MASS

- Determine the molar mass of the following: a.Heptanol
- b.Lead(IV) acetate
- c.Calcium chlorate

CONVERTING MASS AND MOLES

- Mol is a unit that is not directly measureable as it is impossible count atoms at the same time.
- Chemists instead determine the number of moles (or vice versa) by measuring the mass.
- 12 g of carbon-12 is exactly 12 grams, so 6 grams would 0.50 mol and 24 grams would be 2.0 mol.

MOLE CONVERSION W, D.A.

• Calculate the number of moles of titanium(IV) chloride in 50.0 gram sample.

EXAMPLE: MOLE CONVERSION

How many moles of sodium hydrogen carbonate (sodium bicarbonate) are in a sample that weights 508 g?

EXAMPLE: MOLE CONVERSION

Calculate the mass, in grams of 0.422 mol of copper(II) bromide.

EXAMPLE

• Determine the mass of 0.500 mol of ammonium iodate.

MOLE RELATIONSHIP

- The mol relates to mass, and particles and this relationship can be used to move from mass, to mole to particles or the inverse.
- Dimensional analysis makes this process easier!

Cu atoms =
$$(3 \text{ get}) \left(\frac{1 \text{ mol} \cdot \mathbb{C}\overline{u}}{63.5 \text{ get}\overline{u}} \right) \left(\frac{6.02 \times 10^{23} \text{ Cu atoms}}{1 \text{ mol} \cdot \mathbb{C}\overline{u}} \right)$$

 $= 3 \times 10^{22}$ Cu atoms

EXAMPLE: CONVERSIONS

- What number would you use to convert:
- a. Moles of methane to grams of methane

b. Number of molecules of methane to moles of methane?

EXAMPLE: CONVERSIONS

- \bullet How many glucose molecules are in 5.23 g of $C_{\delta}H_{12}O_{\delta}$?
- How many oxygen atoms are in this sample?

EMPIRICAL FORMULAS

- Recall that the **empirical formula** is the number of atoms of each element in a substance.
- \bullet The formula $\rm H_2O$ tells us that there is 2 hydrogen atoms for each oxygen atom.
- By using the mole we can determine the empirical formula of unknown substances.

EMPIRICAL FORMULA

- Mercury and Chlorine form a compound that is 73.9% Hg and 26.1% Cl (by mass).
- By assuming a sample size of 100g, 73.9g is Hg and 26.1g is Cl.
- Using the atomic weights of each element we can determine the number of moles.

$$\begin{split} (73.9 \text{ gHg}) & \left(\frac{1 \text{ mol Hg}}{200.6 \text{ gHg}}\right) = 0.368 \text{ mol Hg} \\ (26.1 \text{ g-Cb}) & \left(\frac{1 \text{ mol Cl}}{35.5 \text{ g-Cl}}\right) = 0.735 \text{ mol Cl} \end{split}$$

EMPIRICAL FORMULA

- The formula Hg_{0.368}Cl_{0.735} doesn't quite look right (remember that formulas have to be whole number ratios.
- Obtain whole number ratio's by dividing by same term (usually the element with the lowest ratio).
- Round when necessary (1.98 2.02). This is caused by experimental errors and limitation with experimental errors.

moles of Cl	_	0.735 mol Cl	_	1.99 mol Cl
moles of Hg	_	0.368 mol Hg	_	1 mol Hg

EXAMPLE: EMPIRICAL FORMULA

Ascorbic acid (vitamin C) contains 40.92% C, 4.58%
 H, and 54.50% O by mass. What is the empirical formula of ascorbic acid?

EXAMPLE: EMPIRICAL FORMULA

 A 5.325-g sample of methyl benzoate, a compound used in the manufacture of perfumes, contains 3.758 g of carbon, 0.316 g of hydrogen, and 1.251 g of oxygen. What is the empirical formula of this substance?

EMPIRICAL FORMULA TO MOLECULAR FORMULA

- Recall that empirical formula's are the reduced whole number multiples of molecular formula.
- To determine a molecular formula from an empirical formula divide the molecular mass by the empirical formula weight.

Whole-number multiple = $\frac{\text{molecular weight}}{\text{empirical formula weight}}$

EMP. FORMULA TO MOLE. FORMULA

- Previously we determined the empirical formula of vitamin C to be $C_3H_4O_3$ which has a mass of 88.0 amu.
- The experimentally determined molecular weight is 176 amu.

Whole-number multiple = $\frac{\text{molecular weight}}{\text{empirical formula weight}} = \frac{176 \text{ amu}}{88.0 \text{ amu}} = 2$

The molecular formula for ascorbic acid is C₆H₈O₆

BALANCED REACTIONS

 The coefficients in a balanced chemical reaction indicate the number of moles AND the number of particles (formula units or molecules).

$2 H_2(g) + 1O_2(g) \rightarrow 2H_2O(I)$

2 H ₂ (g)	+ O ₂ (g) —	\rightarrow 2 H ₂ O(<i>l</i>)		
2 molecules 2(6.02 \times 10 ²³ molecules)	1 molecule 1(6.02 \times 10 ²³ molecules)	2 molecules 2(6.02 \times 10 ²³ molecules)		
2 mol	1 mol	2 mol		

STOICHIOMETRIC QUANTITIES

2 H₂(g) + **1**O₂(g) → **2**H₂O(l) 2 mol H₂ ≈ 1 mol O₂ ≈ 2 mol H₂O

- The quantities represented above are considered to
- be stoichiometrically equivalent.
- This means that a given value can be converted to the next.

EXAMPLE: STOICHIOMETRIC CONVERSION

$2 H_2(g) + 1O_2(g) \rightarrow 2H_2O(I)$

- Using the reaction shown above determine the number of moles of water produced when 1.57 moles of hydrogen reacts with excess oxygen.
- How many moles of oxygen and hydrogen are required to produce 3.58 moles of water?

STOICHIOMETRY WITH MASS

- As we are able to convert mass to moles we are able to use the stoichiometric process a given value of mass instead of moles.
- This is more practical as there is no direct method to determine moles in the lab, it is usually the result of mass measurement.

EXAMPLE: MASS - MASS STOICHIOMETRY

 Calculate the mass of carbon dioxide produced when 5.00g of butane is burnt with excess oxygen.

EXAMPLE: MASS – MASS STOICHIOMETRY

• Determine how many grams of water are produced in the oxidation of 1.00 g of glucose, $C_6H_{12}O_6$.

example: mass – mass stoichiometry

 The decomposition of potassium chlorate is used to create oxygen for some reactions. Determine the mass of oxygen produced if 4.50 g of potassium chlorate breaks down.

EXAMPLE: MASS – MASS STOICHIOMETRY

 Propane is used for many cooking appliance and in home heating. Determine the mass of oxygen gas required to combust 3.00 gram of propane.

LIMITING REACTANT

 Suppose you are making several sandwiches using one slice of cheese and two slices of bread, the recipe is written below:

$$2 \text{ Bd} + \text{Ch} \rightarrow \text{Bd}_2\text{Ch}$$

- If you have 10 slices of bread and 7 slices of cheese how many sandwiches can you make, is there something left over?
- This occurs for chemical reactions, some are limited in the amount of product formed due to a reactant!

DISCUSSION

- If 20.00 g of a compound reacts completely with 30.00 grams of another compound in a combination reaction, how many grams of product are formed?
- Why can't this understanding be applied all reactions?

LIMITING REACTANTS

- Consider a mixture of hydrogen and oxygen.
 - 10 mol of H₂
 - 7 mol O₂

 $2 H_2(g) + O_2(g) \rightarrow 2H_2O(I)$

Moles
$$O_2 = (10 \text{ mol } H_2) \left(\frac{1 \text{ mol } O_2}{2 \text{ mol } H_2} \right) = 5 \text{ mol } O_2$$

LIMITING REACTANT

- For this reaction all the hydrogen would be consumed, this prevents any more water being product. The hydrogen gas is considered to be a limiting reactant.
- This reaction only requires 5 moles of O₂, therefore 2 would be left over, in excess. The oxygen gas is considered to be the excess reactant.

EXAMPLE: LIMITING REACTANT

 The most important commercial process for converting nitrogen from the air into a nitrogen compound is based on the reaction between nitrogen and hydrogen to form ammonia (NH₃). Determine the mass of ammonia formed if 3.0 mol of nitrogen and 6.0 mol of hydrogen is available.

EXAMPLE: LIMITING REACTANT

• When 1.50 mol of Al and 3.00 mol of chlorine gas combine in the reaction 2 Al(s) + $3Cl_2(g) \rightarrow 2AlCl_3(s)$, (a) which is the limiting reactant? (b) how many moles of AlCl_3 are formed? (c) how many moles of excess reactant remain at the end of the reaction?

EXAMPLE: LIMITING REACTANT

• The reaction: $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ is used to produce electricity in a hydrogen fuel cell. Suppose a fuel cell contains 150 g of $H_2(g)$ and 1500 g of $O_2(g)$ (each measured to 2 sig fig). How many grams of water can form?

EXAMPLE: LIMITING REACTANT

 When a 2.00-g strip of zinc metal is placed in an aqueous solution containing 2.50-g of silver nitrate the reaction is

$\text{Zn}(s) \textbf{+} \textbf{2} \text{ AgNO}_3(\textbf{aq}) \rightarrow \text{Zn}(\textbf{NO3})_2(\textbf{aq}) \textbf{+} \textbf{2} \text{ Ag}(s)$

(a)Which reactant is the limiting reagent?

- (b) how many grams of Ag form?
- (c) how many grams of Zn(NO₃)₂ form?
- (d) how many grams of the excess reactant are left at the end of the reaction?

THEORETICAL YIELD

- The quantity of product calculated to form (using the previously learned method) is considered to be the **theoretical yield**.
- The amount of product collected is the **actual yield**.
- The closer to the theoretical yield the actual yield is the **fewer the experimental errors**.

THEORETICAL YIELD

• The actual yield can be greater then 100% if there are impurities, otherwise it will be less than 100% as the reaction has not gone to completion.

Percent yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$

EXAMPLE: THEORETICAL YIELD

- Adipic acid, $H_2C_6H_8O_4$, used to produce nylon, is made commercially by a reaction between cyclohexane (C_6H_{12}) and O_2 .

$\label{eq:constraint} C_{\delta} H_{12}(I) + 5 O_2(g) \rightarrow 2 H_2 C_{\delta} H_8 O_4(I) + 2 \ H_2 O(g)$

- (a) Assume you carry out this reaction with 25.0 g of cyclohexane and that cyclohexane is the limiting reactant. What is the theoretical yield of adipic acid?
- (b) If you obtain 33.5 g of adipic acid, what is the percent yield for the reaction?

EXAMPLE: THEORETICAL YIELD

 Imagine you are working on ways to improve the process by which iron ore containing iron(III) oxides is converted into iron according to the following formula

$\mathrm{Fe_2O_3(s)} + \mathrm{3CO(g)} \rightarrow \mathrm{2Fe(s)} + \mathrm{3CO_2(g)}$

- a. If you started with 150. g of ${\rm Fe}_2{\rm O}_3$ as the limiting reactant, what is the theoretical yield of Fe?
- b.If your actual yield is 87.9 g, what is the percent yield?

Pre-AP Chemistry