UNIT THREE

$$
\begin{aligned}
& \text { STOICHIOMETRY: } \\
& \text { CALCULATIONS WITH } \\
& \text { CHEMICAL FORMULAS }
\end{aligned}
$$

I CAN...

- Convert between number of particles, mass or moles using conversion factors.
- Determine the empirical formula of a given compound.
- Use stoichiometry to determine mass of products, and required number of moles for a given reaction.
- Balance equations using an understanding of the law of conservation of mass.
- Write (and balance) equations, based on descriptions.
- Classify reactions as combustion, decomposition or synthesis.
- Calculate formula weights of elements, molecules or compounds.

STOICHIOMETRY

- Chemical reactions are taking place around us all the time.
- Some are easy to see because of indicators like color change while others are happening inside us all the time without our knowledge.
- Stoichiometry is the study of chemical reactions, specifically how the quantity of substances are consumed or produced in relation to each other.
- We represent chemical reactions using a chemical equation.

$$
\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

- We read the sign + as reacts with, and the \rightarrow as produces.
- The substances on the left hand side of the \rightarrow are considered to be reactants, while the products are shown on the right.

BALANCING CHEMICAL REACTIONS

- Atoms are neither created nor destroyed, this means the number of atoms on the reactant side must equal the number of atoms on the product side.
- To do balance reactions, count the number of atoms and change by altering the coefficient at the front.

EXAMPLE: COUNTING ATOMS

- How many atoms of Mg, O and H are represented in the chemical formula $3 \mathrm{Mg}(\mathrm{OH})_{2}$?
- How many atoms of Al, C, H , and O are in the compound $\mathrm{Al}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}$?

EXAMPLE: INTERPRETING CHEMICAL EQUATIONS

- The following diagram represents a chemical reaction in which the blue spheres are nitrogen, while the red are oxygen. (a) write the chemical formula for the reactants and products, (b) write a balanced chemical reaction, (c) is this diagram consistent with the law of conservation of mass?

EXAMPLE: BALANCING

- Balance the following equations:
- $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
- $\mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
- $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $\mathrm{Al}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

BALANCING EQUATIONS

- Once the reactants and products are known we can write an unbalanced chemical reaction.
- Changing the coefficient IS NOT THE SAME as changing a subscript. You can ONLY change the coefficient.

INDICATING THE STATES

- Symbols indicating the physical state of the reactants and products are often shown.
- We use (g), (I), (s), and (aq) for gas, liquid, solid and aqueous (water) solution respectively.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- For reactions that involve the addition of heat, the symbol Delta (Δ) is used over the \rightarrow symbol.

PATTERNS OF CHEMICAL REACTIVITY

- There are three* basic types of reactions to be covered in this unit: combination (synthesis), decomposition and combustion.
- Knowing patterns with reactivity allows us to predict the products of a reaction with knowing only the reactants.

Pre-AP Chemistry

COMBINATION \& DECOMPOSITION

- In combination reactions, two or more reactants combine to create a single product.

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

- When magnesium reacts with oxygen, it loses electrons and forms Mg^{2+} while oxygen gains electrons to form O^{2-}. They 'bond' and form the compound MgO .
- All combination reactions follow the form $A+B \rightarrow C$

DECOMPOSITION

- In a decomposition reaction, a single reactants breaks down into two or more other substances.

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

- Carbonates $\left(\mathrm{XCO}_{3}\right)$ will break down into an oxide (XO) and carbon dioxide $\left(\mathrm{CO}_{2}\right)$
- Chlorates $\left(\mathrm{XClO}_{3}\right)$ will break down into a binary compound (XCl) and oxygen gas.
- Metal hydroxides (MOH) will break down to an oxide (MO) and water.

COMBUSTION REACTIONS

- Combustion reactions are rapid reactions that involve a flame.
- Often the result of hydrocarbons ($\mathrm{C}_{x} \mathrm{H}_{y}$) burning in the presence of oxygen $\left(\mathrm{O}_{2}\right)$
- All hydrocarbons produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{C}_{x} \mathrm{H}_{y}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

EXAMPLE: PREDICTING PRODUCTS

- Write the balanced chemical equations for the following chemical descriptions:
- the reaction between lithium metal and fluorine gas
- a reaction that occurs when solid barium carbonate is heated.

EXAMPLE: COMBUSTION

- Predict the products of the following reactions:
- Ethane combusts when ignited in the presence of oxygen gas.
- Propanol (an alcohol substituted propane) undergoes combustion when ignited in the presence of oxygen.

Pre-AP Chemistry

EXAMPLE: CLASSIFICATION

- A piece of silver will react chemically with oxygen when it is heated
- Liquid octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is burned completely in oxygen gas
- Chlorine gas is bubbled through a solution of sodium bromide
- Rubidium carbonate decomposes when heated above 100 C.
- Solid magnesium hydroxide breaks down when subjected to UV light
- Crystalline bismuth(III) oxide decomposes with heat
- Heptane is a flammable hydrocarbon above 30C.
- Crystalline aluminium chlorate is heated until it decomposes

THE MOLE CONCEPT

THE MATHY PART BEGINS

FORMULA AND MOLECULAR WEIGHT

- The formula weight of a substance is the sum of atomic weights of the atoms in the chemical formula of the substance.
- For example, the formula weight of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ is 98.1 amu:

FW of $\mathrm{H} 2 \mathrm{SO} 4=2(\mathrm{AW}$ of H$)+(\mathrm{AW}$ of S$)+4(\mathrm{AW}$ of O$)$
$=2(1.0 \mathrm{amu})+32.1 \mathrm{amu}+4(16.0 \mathrm{amu})$
$=98.1 \mathrm{amu}$

EXAMPLE: PREDICTING

- Solid silver will react chemically with oxygen when it is heated
- Chlorine gas is bubbled through a solution of sodium bromide
- Solid magnesium hydroxide breaks down when put in UV light
- Heptane is a flammable hydrocarbon above 30C.

FORMULA WEIGHTS

- Chemical formulas and chemical equations have a quantitative aspect, that is, they represent precise quantities.
- Similarly, the coefficients in a balanced chemical equation represent a quantity of reactants and products.
- How, if atoms are so small, can we perform a reaction with the correct number of atoms?

MOLECULAR WEIGHT

- If the chemical formula is that of an element, it is simply the value from the PT.
- If the chemical formula is a molecule it is called the molecular weight (it is calculated the same way).
- What is the MW of glucose? $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$

EXAMPLE: FORMULA WEIGHTS

- Calculate the formula weight of:
- Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ [table sugar]
- Calcium nitrate, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
- Ruthenium(III) dihydrogen phosphate

EXAMPLE: PERCENTAGE COMPOSITION

- Calculate the percentage of carbon, hydrogen and oxygen (by mass) in sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.

AVOGADRO'S NUMBER

6.02×10^{23}

How big is it?

PERCENTAGE COMPOSITION

- Chemists must sometimes calculate the percentage composition of a compound - how much each element contributes to the mass of the entire compound.
- This test can be useful to determine if a white powder is sugar, salt or cocaine.
$\%$ composition $=\frac{(\text { number of atoms of element })(\text { atomic weight of element })}{\text { formula weight of substance }} \times 100 \%$

EXAMPLE: PERCENTAGE COMPOSITION

- Calculate the percentage of nitrogen, by mass, in calcium nitrate.

THE MOLE

- When we buy eggs, we buy a dozen (12).
- When we buy shoes, they come in a pair (2).
- When we count atoms we use a mole which is based on 12 g of isotopically pure carbon-12. This number is precisely 6.0221421×10^{23}.
- We call this number (rounded to 6.02×10^{23}) Avogadro's number $\left(N_{A}\right)$ in honor of the scientist (Amedeo Avogadro) who discovered it.

THE MOLE

- This number, sometimes written as $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ reminds us that any collection of objects that is 6.02×10^{23} is considered to be a mole.

$$
\begin{aligned}
& 1 \mathrm{~mol}{ }^{12} \mathrm{C} \text { atoms }=6.02 \times 10^{23}{ }^{12} \mathrm{C} \text { atoms } \\
& 1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \text { molecules }=6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O} \text { molecules } \\
& 1 \mathrm{~mol} \mathrm{NO}_{3}{ }^{-} \text {ions }=6.02 \times 10^{23} \mathrm{NO}_{3}{ }^{-} \text {ions }
\end{aligned}
$$

EXAMPLE: THE MOLE

- Calculate the number of H atoms in 0.350 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
- Determine the number of oxygen atoms in 0.125 mol of calcium nitrite

EXAMPLE: THE MOLE

- Without using a calculator, arrange these samples in order of increasing carbon atoms:
a. $12 \mathrm{~g}{ }^{12} \mathrm{C}$
b. 1.5 mol . of $\mathrm{C}_{2} \mathrm{H}_{2}$
c. 9×10^{23} molecules of CO_{2}

MOLAR MASS

- A dozen is the same number, 12, whether we have a dozen eggs or a dozen elephants.
- While the number of atoms in a mole is the same, the mass is not.
- Remember that one atom of carbon-12 is 12 amu, while one atom of magnesium-24 is 24 amu.
- Because one mole always contains the same number of atoms, this means that one mole of magnesium must weigh twice as much -24 g .

EXAMPLE: MOLAR MASS

- Determine the molar mass of the following:
- A molecular of oxygen gas
- The formula unit of sodium chloride
- An ion of nitrate

DISCUSSION

A. Which has more mass, a mole of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ or a mole of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$?
B. Which contains more molecules, a mole of water or a mole of glucose?

EXAMPLE: MOLAR MASS

- Determine the molar mass of the following:
a. Heptanol
b.Lead(IV) acetate
c. Calcium chlorate

MOLE CONVERSION W, D.A.

- Calculate the number of moles of titanium(IV) chloride in 50.0 gram sample.

TABLE 3.2 - Mole Relationships				
Name of Substance	Formula	Formula Weight (amu)	$\begin{aligned} & \text { Molar Mass } \\ & (\mathrm{g} / \mathrm{mol}) \end{aligned}$	Number and Kind of Particles in One Mole
Atomic nitrogen	N	14.0	14.0	$6.02 \times 10^{23} \mathrm{~N}$ atoms
Molecular nitrogen	N_{2}	28.0	28.0	$\left\{\begin{array}{c} 6.02 \times 10^{23} \mathrm{~N}_{2} \text { molecules } \\ 2\left(6.02 \times 10^{0^{23}}\right) \mathrm{N} \text { atoms } \end{array}\right.$
Silver	Ag	107.9	107.9	$6.02 \times 10^{23} \mathrm{Ag}$ atoms
Silver ions	Ag^{+}	107.9*	107.9	$6.02 \times 10^{23} \mathrm{Ag}^{+}$ions
Barium chloride	BaCl_{2}	208.2	208.2	$\left\{\begin{array}{c}6.02 \times 10^{23} \mathrm{BaCl}_{2} \text { formula units } \\ 6.02 \times 10^{23} \mathrm{Ba}^{2+} \text { ions } \\ 2\left(6.02 \times 10^{23}\right) \mathrm{Cl}^{\text {l }} \text { ions }\end{array}\right.$

CONVERTING MASS AND MOLES

- Mol is a unit that is not directly measureable as it is impossible count atoms at the same time.
- Chemists instead determine the number of moles (or vice versa) by measuring the mass.
- 12 g of carbon-12 is exactly 12 grams, so 6 grams would 0.50 mol and 24 grams would be 2.0 mol .

EXAMPLE: MOLE CONVERSION

How many moles of sodium hydrogen carbonate (sodium bicarbonate) are in a sample that weights 508 g ?

Pre-AP Chemistry

EXAMPLE: MOLE CONVERSION

- Calculate the mass, in grams of 0.422 mol of copper(II) bromide.

MOLE RELATIONSHIP

- The mol relates to mass, and particles and this relationship can be used to move from mass, to mole to particles or the inverse.
- Dimensional analysis makes this process easier!

$$
\mathrm{Cu} \text { atoms }=(3 \mathrm{gCu})\left(\frac{1 \mathrm{~mol} \mathrm{Cu}_{\bar{u}}}{63.5 \mathrm{~g} \mathrm{Cu}}\right)\left(\frac{6.02 \times 10^{23} \mathrm{Cu} \text { atoms }}{1 \mathrm{molCu}}\right)
$$

$$
=3 \times 10^{22} \mathrm{Cu} \text { atoms }
$$

EXAMPLE: CONVERSIONS

- How many glucose molecules are in 5.23 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
- How many oxygen atoms are in this sample?

EXAMPLE

- Determine the mass of 0.500 mol of ammonium iodate.

EXAMPLE: CONVERSIONS

- What number would you use to convert:
a. Moles of methane to grams of methane
b. Number of molecules of methane to moles of methane?

EMPIRICAL FORMULAS

- Recall that the empirical formula is the number of atoms of each element in a substance.
- The formula $\mathrm{H}_{2} \mathrm{O}$ tells us that there is 2 hydrogen atoms for each oxygen atom.
- By using the mole we can determine the empirical formula of unknown substances.

EMPIRICAL FORMULA

- Mercury and Chlorine form a compound that is $73.9 \% \mathrm{Hg}$ and $26.1 \% \mathrm{Cl}$ (by mass).
- By assuming a sample size of $100 \mathrm{~g}, 73.9 \mathrm{~g}$ is Hg and 26.1 g is Cl .
- Using the atomic weights of each element we can determine the number of moles.

$$
\begin{aligned}
(73.9 \mathrm{gHg})\left(\frac{1 \mathrm{~mol} \mathrm{Hg}}{200.6 \mathrm{~g} \mathrm{Hg}}\right) & =0.368 \mathrm{~mol} \mathrm{Hg} \\
(26.1 \mathrm{gel})\left(\frac{1 \mathrm{~mol} \mathrm{Cl}}{35.5 \mathrm{~g} \mathrm{Cl}}\right) & =0.735 \mathrm{~mol} \mathrm{Cl}
\end{aligned}
$$

EXAMPLE: EMPIRICAL FORMULA

- Ascorbic acid (vitamin C) contains 40.92% C, 4.58% H , and $54.50 \% \mathrm{O}$ by mass. What is the empirical formula of ascorbic acid?

EMPIRICAL FORMULA TO MOLECULAR FORMULA

- Recall that empirical formula's are the reduced whole number multiples of molecular formula.
- To determine a molecular formula from an empirical formula divide the molecular mass by the empirical formula weight.

$$
\text { Whole-number multiple }=\frac{\text { molecular weight }}{\text { empirical formula weight }}
$$

EMPIRICAL FORMULA

- The formula $\mathrm{Hg}_{0.368} \mathrm{Cl}_{0.735}$ doesn't quite look right (remember that formulas have to be whole number ratios.
- Obtain whole number ratio's by dividing by same term (usually the element with the lowest ratio).
- Round when necessary (1.98-2.02). This is caused by experimental errors and limitation with experimental errors.

$$
\frac{\text { moles of Cl }}{\text { moles of } \mathrm{Hg}}=\frac{0.735 \mathrm{~mol} \mathrm{Cl}}{0.368 \mathrm{~mol} \mathrm{Hg}}=\frac{1.99 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Hg}}
$$

EXAMPLE: EMPIRICAL FORMULA

- A 5.325-g sample of methyl benzoate, a compound used in the manufacture of perfumes, contains 3.758 g of carbon, 0.316 g of hydrogen, and 1.251 g of oxygen. What is the empirical formula of this substance?

EMP. FORMULA TO MOLE. FORMULA

- Previously we determined the empirical formula of vitamin C to be $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$ which has a mass of 88.0 amu .
- The experimentally determined molecular weight is 176 amu .

$$
\text { Whole-number multiple }=\frac{\text { molecular weight }}{\text { empirical formula weight }}=\frac{176 \mathrm{amu}}{88.0 \mathrm{amu}}=2
$$

- The molecular formula for ascorbic acid is $\mathbf{C}_{6} \mathbf{H}_{8} \mathbf{O}_{6}$

Pre-AP Chemistry

BALANCED REACTIONS

- The coefficients in a balanced chemical reaction indicate the number of moles AND the number of particles (formula units or molecules).

$2 \mathrm{H}_{2}(\mathrm{~g})+\mathbf{1} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$				
$2 \mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g}) \quad \longrightarrow$		$2 \mathrm{H}_{2} \mathrm{O}(l)$
2 molecules		1 molecule		2 molecules
$2\left(6.02 \times 10^{23}\right.$ molecules)	1(6.02	$\times 10^{23}$ molecules)	2(6.02	$\times 10^{23}$ molecules)
2 mol		1 mol		2 mol

STOICHIOMETRIC QUANTITIES

$$
\begin{gathered}
\mathbf{2} \mathrm{H}_{2}(\mathrm{~g})+\mathbf{1 O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
2 \mathrm{~mol} \mathrm{H}_{2} \approx 1 \mathrm{~mol} \mathrm{O}_{2} \approx 2 \mathrm{~mol} \mathrm{H}
\end{gathered}
$$

- The quantities represented above are considered to be stoichiometrically equivalent.
- This means that a given value can be converted to the next.

STOICHIOMETRY WITH MASS

- As we are able to convert mass to moles we are able to use the stoichiometric process a given value of mass instead of moles.
- This is more practical as there is no direct method to determine moles in the lab, it is usually the result of mass measurement.

EXAMPLE: STOICHIOMETRIC CONVERSION

$$
2 \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

- Using the reaction shown above determine the number of moles of water produced when 1.57 moles of hydrogen reacts with excess oxygen.
- How many moles of oxygen and hydrogen are required to produce 3.58 moles of water?

Pre-AP Chemistry

EXAMPLE: MASS - MASS STOICHIOMETRY
EXAMPLE: MASS - MASS STOICHIOMETRY

- Calculate the mass of carbon dioxide produced when 5.00g of butane is burnt with excess oxygen.

EXAMPLE: MASS - MASS STOICHIOMETRY

- The decomposition of potassium chlorate is used to create oxygen for some reactions. Determine the mass of oxygen produced if 4.50 g of potassium chlorate breaks down.

LIMITING REACTANT

- Suppose you are making several sandwiches using one slice of cheese and two slices of bread, the recipe is written below:

$$
2 \mathrm{Bd}+\mathrm{Ch} \rightarrow \mathrm{Bd}_{2} \mathrm{Ch}
$$

- If you have 10 slices of bread and 7 slices of cheese - how many sandwiches can you make, is there something left over?
- This occurs for chemical reactions, some are limited in the amount of product formed due to a reactant!

EXAMPLE: MASS - MASS STOICHIOMETRY

- Propane is used for many cooking appliance and in home heating. Determine the mass of oxygen gas required to combust 3.00 gram of propane.
- Determine how many grams of water are produced in the oxidation of 1.00 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

DISCUSSION

- If 20.00 g of a compound reacts completely with 30.00 grams of another compound in a combination reaction, how many grams of product are formed?
- Why can't this understanding be applied all reactions?

Pre-AP Chemistry

LIMITING REACTANTS

- Consider a mixture of hydrogen and oxygen.
- 10 mol of H_{2}
- $7 \mathrm{~mol} \mathrm{O}_{2}$

$$
\begin{gathered}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\text { Moles } \mathrm{O}_{2}=\left(10 \mathrm{mel} \mathrm{H}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{molH}_{2}}\right)=5 \mathrm{~mol} \mathrm{O}_{2}
\end{gathered}
$$

EXAMPLE: LIMITING REACTANT

- The most important commercial process for converting nitrogen from the air into a nitrogen compound is based on the reaction between nitrogen and hydrogen to form ammonia $\left(\mathrm{NH}_{3}\right)$. Determine the mass of ammonia formed if 3.0 mol of nitrogen and 6.0 mol of hydrogen is available.

EXAMPLE: LIMITING REACTANT

- The reaction: $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is used to produce electricity in a hydrogen fuel cell. Suppose a fuel cell contains 150 g of $\mathrm{H}_{2}(\mathrm{~g})$ and $1500 \mathrm{~g} \mathrm{of} \mathrm{O}_{2}(\mathrm{~g})$ (each measured to 2 sig fig). How many grams of water can form?

LIMITING REACTANT

- For this reaction all the hydrogen would be consumed, this prevents any more water being product. The hydrogen gas is considered to be a limiting reactant.
- This reaction only requires 5 moles of O_{2}, therefore 2 would be left over, in excess. The oxygen gas is considered to be the excess reactant.

EXAMPLE: LIMITING REACTANT

- When 1.50 mol of Al and 3.00 mol of chlorine gas combine in the reaction $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})$, (a) which is the limiting reactant? (b) how many moles of AlCl_{3} are formed? (c) how many moles of excess reactant remain at the end of the reaction?

EXAMPLE: LIMITING REACTANT

- When a 2.00 -g strip of zinc metal is placed in an aqueous solution containing $2.50-\mathrm{g}$ of silver nitrate the reaction is

$\mathrm{Zn}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathbf{Z n}(\mathrm{NO} 3)_{2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$

(a) Which reactant is the limiting reagent?
(b) how many grams of Ag form?
(c) how many grams of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ form?
(d) how many grams of the excess reactant are left at the end of the reaction?

Pre-AP Chemistry

THEORETICAL YIELD

- The quantity of product calculated to form (using the previously learned method) is considered to be the theoretical yield.
- The amount of product collected is the actual yield.
- The closer to the theoretical yield the actual yield is the fewer the experimental errors.

THEOREIICAL YIELD

- The actual yield can be greater then 100% if there are impurities, otherwise it will be less than 100% as the reaction has not gone to completion.

$$
\text { Percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%
$$

EXAMPLE: THEORETICAL YIELD

- Adipic acid, $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$, used to produce nylon, is made commercially by a reaction between cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ and O_{2}.

$$
\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(a) Assume you carry out this reaction with 25.0 g of cyclohexane and that cyclohexane is the limiting reactant What is the theoretical yield of adipic acid?
(b) If you obtain 33.5 g of adipic acid, what is the percent yield for the reaction?

EXAMPLE: THEORETICAL YIELD

- Imagine you are working on ways to improve the process by which iron ore containing iron(III) oxides is converted into iron according to the following formula

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

a. If you started with $150 . \mathrm{g}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ as the limiting reactant, what is the theoretical yield of Fe ?
b. If your actual yield is 87.9 g , what is the percent yield?

```
Pre-AP Chemistry
```

