Name: Solutions	Date:	
Period:		

Chemistry 30: Acids and Bases

Practice Problems

Properties of Acids and Bases

1. List four characteristic properties of acids and of bases. Acids: sour taste, react with metals & carbonates, turns litmus red Bases: Slippery feel, bitter taste, react with acids, turns litmus blue 2. Classify each of the following as either an acid or a base:

- a. The substance has a bitter taste BASE
- b. H2SO4ACID
- c. litmus paper dipped in this turns red ACIO
- d. reacts with active metals to produce hydrogen gas ACID
- e. KOH BASE

- f. NH₃ BASE
- g. has a slippery feel BASE
- h. has a sour taste ACID
- a proton donor ACID
- j. a proton acceptor BASE

3. Copy the chart and fill it in with definitions.

	Acid	Base
Arrhenius	Contains H and dissolves to produce H+	contains OH and dissolves to produce OH-
	H+ domor in mans	Ht acceptor in rxns

10

4. Which of the following could be considered Brønsted-Lowry bases? an H⁺

a. Br-Yes

c. H₃PO₄

e. H2O Yes

b. Li+ 20 d. NH₄⁺ 10 f. NH2 yes

Conjugate Acid-Base Pairs

5. Identify the acid, base, conjugate acid and conjugate base for each of the following.

a.
$$HClO_4(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + ClO_4^-(aq)$$

b.
$$H_2SO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HSO_3^-(aq)$$

c.
$$HC_2H_3O_2(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + C_2H_3O_2^-(aq)$$

d.
$$H_2S(g) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HS^-(aq)$$

e.
$$HSO_3^-(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + SO_3^{2-}(aq)$$

f.
$$NH_3(g) + H_2O(l) \rightleftharpoons NH_4+(aq) + OH-(aq)$$

g.
$$HF(aq) + HSO_3-(aq) \rightleftharpoons F-(aq) + H_2SO_3(aq)$$

h.
$$HNO_2(aq) + HS^-(aq) \rightleftharpoons NO_2^-(aq) + H_2S(aq)$$

Э.	Con	nplete the equation for the reaction of each of the following with water. Then:
	i.	Indicate whether the ion or molecule is an acid or base; and,
	ii.	Indicate whether each reaction is explained by Arrhenius, Brønsted-Lowry, or both.
		A B Chase must have off
		a. $HI(aq) + H_2O(1) \Rightarrow H_3O^+ + I^-$ b. $HF(aq) + H_2O(1) \Rightarrow F^- + H_3O^+$ Both e. $O^2 - (aq) + H_2O(1) \Rightarrow F^- + O^- + $
		b. $HF(aq) + H_2O(1) \rightleftharpoons F^- + H_3O^+$ e. $O^2-(aq) + H_2O(1) \rightleftharpoons 2OH^-$
		c. $C_2H_3O_2^-(aq) + H_2O(1) \Rightarrow HC_2H_3O_1 + OH^-$ $B - L only$
		B-1 only

7. Define the term amphoteric. Give an example of an amphoteric compound.

amphatenic compounds can act as either an acid or a base, depending on what they are combined with (e.g. H₂O, HCO₃, 8. Write the formula for the conjugate base of:

a. H₂SO₃

b. HCO₃

CO₃

CO₃

NH₄

NH₃

What are the conjugate bases of these acids?

original acid	conjugate base
HNO ₃	NO3-
H ₂ O	OH-
H ₃ O+	H20
H ₂ SO ₄	HS04
HBr	Br-
HCO ₃ -	C032-

9. What are the conjugate acids of these bases?

add one

original ba	se conjugate acid
OH-	H20
H ₂ O	H30+
HCO ₃ -	H2 CO3
SO ₄ 2-	HS04-
ClO ₄ -	HClO4

10. Write the formula for the conjugate acid of:

a.
$$H_2O$$
 H_3O^+

11. Which of the following represent conjugate acid-base pairs?

b. OH-,
$$HNO_3$$
 γ \circ

Strength of Acids and Bases

12. What is the difference between a strong acid and a weak acid? Give an example of both.

A strong acid ionizes completely in a solution HCl > H+Cl-A weak acid ionizes less than 50% in solution HC2H3O2 = H++ C2H3O2-

13. Explain the difference between the terms "concentrated" and "dilute" with	respect to both
strong and weak acids. strong > lots of H+ and A-ions	

Concentrated \leq weak \Rightarrow lots of HA molecules and H⁺ and A⁻ ions where \leq strong \Rightarrow a few H+ and A⁻ ions where \Rightarrow a few HA molecules and even fewer H⁺ and A⁻ ions in Finish the following reactions:

a. $H_2SO_4 + H_2O \Rightarrow HSO_4 - H_3O^+$ b. $HCI + OH \Rightarrow H_2O + CI$ c. $NH_3 + H_2O \Rightarrow NH_4^+ + CI^-$ d. $HCI + NH_3 \Rightarrow NH_4^+ + CI^-$

a.
$$H_2SO_4 + H_2O \Rightarrow HSO_4 - H_3O +$$

c.
$$NH_3 + H_2O \rightleftharpoons N H_4^+ + OH^-$$

d.
$$HCl + NH_3 \rightleftharpoons NH_4 + Cl$$

15. Write a dissociation equation for each acid or base in an aqueous solution. Remember to use a single arrow (\rightarrow) for strong acids and bases and a double arrow (\rightleftharpoons) for weak acids and bases.

$$HCN \rightleftharpoons H^{\dagger} + CN^{-}$$

b. NaOH

c. Cu(OH)2 (not fechnically weat) f. HC2H3O2

16. Write balanced equations for:

a. The dissociation of calcium hydroxide

The ionization of nitric acid

The ionization of propionic acid

d. The dissociation of pyridine

Ka and Kb

17. Given the following balanced ionization reactions for the following weak acids and bases, write the K_a or K_b expressions for each.

c. methylamine: CH₃NH₂ (aq) + H₂O (l) \rightleftharpoons CH₃NH₃+ (aq) + OH- (aq)

18. Calculate [H $^+$] for a 1.0 × 10 $^{-3}$ M solution of hydrochloric acid.

$$HCP \Rightarrow H^{+} + CQ^{-}$$

 1.0×10^{-3} 1.0×10^{-3} 1.0×10^{-3}

19. Calculate [H+] in a 0.20 M solution of formic acid. $K_a = 1.8 \times 10^{-4}$

$$K_{q} = \frac{[H+7(HC00^{-})]}{[HC00H]} \qquad 1.8 \times 10^{-4} = \frac{\pi^{2}}{0.20-\pi} \qquad [H+] = \pi = 0.0060M$$

20. Ethylamine (C₂H₅NH₂) is a weak base. Calculate [OH-] in a 2.32 × 10-3 M solution if K_b = 5.6 × 10-4.
C₂H₅NH₂ + H₂O
$$\rightleftharpoons$$
 C₂H₅NH₃ + OH
 $= \frac{C_2H_5NH_3+J[OH-]}{[C_2H_5NH_2]}$ 5.6×10-4 = $\frac{\pi^2}{232\times10^{-3}-f}$ [OH-] = π = 0.0011 M

21. Calculate [OH-] is a solution containing 100.0 g of potassium hydroxide in 2.50 L solution. Potassium hydroxide is a strong base.

$$M_{KOH} = 56 \cdot 11g \, \text{Imol}$$

$$N = \frac{M}{M} = \frac{100.0}{56 \cdot 11} = 1.78 \, \text{mol}$$

$$C = \frac{N}{N} = \frac{1.78}{2.50} = 0.712 \, \text{M}$$
22. A solution is prepared that contains 0.0445 mole of sulfuric acid in a total solution volume of

12.1 L. Sulfuric acid typically undergoes complete ionization according to the equation:

$$H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$$

Calculate [H+]. Sulfuric acid is a strong acid.

$$[H_2SO_4] = \frac{n}{V} = \frac{0.0445}{12.1} = 0.00368M$$

 $[H^+] = 2[H_2SO_4] = 0.00736M$

23. Calculate the hydroxide ion concentration in a 0.045M solution of ammonia, NH3, a weak base

23. Calculate the hydroxide ion concentration in a 0.045M solution of ammonia, NH₃, a weak base with
$$K_b = 1.8 \times 10^{-5}$$
. $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]} \qquad [OH^-] = \chi = 9.0 \times 10^{-4} M.$$

pH and pOH

24. Determine pH and pOH for each concentration.

a.
$$[H^+] = 0.023 \text{ M}$$

 $\rho H = 1.6 \quad \rho 0 H = 12.4$

b.
$$[H^+] = 6.6 \times 10^{-6} M$$

 $pH = 5.2 pOH = 8.8$

c.
$$[OH-] = 0.0334 M$$

 $POH = 1.48 PH = 12.52$

d.
$$[OH] = 9.01 \times 10^{-4} \text{ M}$$

 $POH = 3.05 \text{ pH} = 10.95$

e.
$$[H^+] = 8.96 \times 10^{-3} \text{ M}$$

 $pH = 2.05 \quad pOH = 11.95$

25. Determine [H+] and [OH-] for each pH value.
a. pH = 2.5

$$[H+] = 0.0032M[OH-] = 3.2 \times 10^{-12}M$$

b. pH = 11.3
 $[H+] = 5.0 \times 10^{-12}M[OH-] = 2.0 \times 10^{-3}$

c. pOH = 4.6
 $[OH-] = 2.5 \times 10^{-5}M[H+] = 4.0 \times 10^{-10}M$

26. 4.52 g of calcium hydroxide, a strong base, is dissolved in 1.00 L of water. What is the pH of the (a(OH)2 -> (a2+ + 20Hresulting solution?

$$MCa(0H)_{2} = 74.10g Imol$$

$$C = \frac{m}{MV} = \frac{4.52}{(74.10)(1.00)} = 0.0610M$$

$$C = \frac{m}{MV} = \frac{4.52}{(74.10)(1.00)} = 0.0610M$$

$$C = \frac{m}{MV} = \frac{4.52}{(74.10)(1.00)} = 0.0610M$$

$$POH = -log [0H^{-}] = 0.914$$

$$PH = 13.0$$

27. Methanoic acid (HCHO₂) is a weak acid that undergoes the following ionization real \mathcal{L} $HCHO_2 \rightleftharpoons H^+ + CHO_2^-$

If 25.0 g of methanoic acid is dissolved to make 0.500 L of solution, what is the pH?

If 25.0 g of methanoic acid is dissolved to make 0.500 L of solution, what is the pH?

$$[H(HO_2) = 1.09M \quad K_0 = \frac{[H+T](CHO_2)}{[H(HO_2)]} \quad [H+T] = \chi = 0.014M$$

$$1.7 \times 10^{-4} = \frac{\pi^2}{1.09} \quad \rho H = 1.9$$

28. A weak base, methylamine, is dissolved in water according to the following dissociation reaction:

 $CH_3NH_2(aq) + H_2O(l) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$

If 0.00355 moles of methylamine is present in 1.25 L of solution, what is the pH?

[CH₃NH₂] = 0.00284M
[CH₃NH₂] = 0.0011M
[CH₃NH₂] = 0.0011M

$$4.4 \times 10^{-4} = \frac{\pi^2}{0.00284}$$
 $\rho H = 11.0$
29. Phosphoric acid is a **weak** acid that undergoes the following ionization reaction:

 $H_3PO_4(aq) \rightleftharpoons H^+(aq) + H_2PO_4^-(aq)$

If there is 1.32×10^{-2} mol of phosphoric acid present in 875 mL of solution, calculate the concentration of hydrogen ions, H⁺, in solution. K_a for phosphoric acid is 7.0×10^{-3} .

$$\begin{array}{c} \text{Kg} = \frac{[H^{+}][H_{2}P0_{4}^{-}]}{[H_{3}P0_{4}]} & [H^{+}] = 2L = 1.1 \times 10^{-4} \text{ M} \\ \text{[H}_{3}P0_{4}] = 0.015 \text{ [M} & \frac{2}{1.0} = \frac{2}{1.0} \\ \text{[H}_{3}P0_{4}] & \frac{2}{1.0} = \frac{2}{1.0} \end{array}$$

30. A solution of acetic acid contains 12.0 g of $HC_2H_3O_2$ in 500 mL of solution. Calculate [H+].

$$[HC_2H_3O_2] = 0.400M \cdot Kq = \frac{[H+][C_2H_3O_2]}{[HC_2H_3O_2]} \qquad [H+] = \chi = 0.0026M$$

$$1.7 \times 10^{-5} = \frac{\chi^2}{0.400}$$

31. Why would the pH		colution of HCl and a 0.05 M solution	of acetic acid?
What is the differe	nce in pH? $K_{q} =$	[H+][C2H3O2]	and is stoma
HCl	HC2H3O2	[HC2H3O2]	one is strong (complotely ionize
$[H^{\dagger}] = 0.05M$	$1.7 \times 10^{-5} = \frac{\chi^2}{0.05}$	[H+]=x=9.2×10-4m	and the other is
32. Calculate the pH of	f a 0.00345 M solution of a	naline, C ₆ H ₅ NH ₂ , a weak base.	weak (ionizes very little)
Kb = [[6HsNH	3+1[OH] [OH	$-)=\chi=1.2\times10^{-6}M$	J
TC, Han	(Ha I	- 11 - 1	

$$4.2 \times 10^{-16} = \frac{\chi^2}{6.00345}$$
33. Calculate the [H+] in a solution in which [OH-] = 2.0×10-2 M. Is this solution acidic, neutral, or basic?

$$[H+] = \frac{Kw}{[OH^{-}]} = \frac{10^{-14}}{2.0 \times 10^{-2}} = 5.0 \times 10^{-13} M$$
basic

34. Find pH of each of the following. Identify each as an acidic, neutral, or basic.

a.
$$[H^+] = 0.0015 \,\text{M}$$
 $\rho H = 2.8$ acidic

c.
$$[OH] = 3.27 \times 10^{-4} \text{ M}$$
 $pOH = 3.49$ basic $pH = 10.51$

c.
$$[OH-] = 3.27 \times 10^{-4} \text{ M}$$
 $pOH = 3.49$ basic $pH = 10.51$ d. $[OH-] = 1.00 \times 10^{-12} \text{ M}$ $pOH = 12$ acidic $pH = 2$

35. What is the pH, pOH, [H+], and [OH-] for a 3.2×10^{-4} M solution of sodium hydroxide?

$$[0H^{-}] = 3.2 \times 10^{-4} \,\text{M}$$
 $pDH = 3.5$
 $[H^{+}] = 3.2 \times 10^{-11} \,\text{M}$ $pH = 10.5$

36. What is the pH, pOH, [H+], and [OH-] for a 9.20×10^{-3} M solution of sulfuric acid?

$$[H+]=0.0184m$$
 $pH=1.74$ H_2SO_4 $[OH]=5.43\times10^{-13}M$ $pOH=12.26$

Neutralization

- 77. For each reaction:
 - a. Balance the reaction:
 - b. Write the complete ionic equation and the net ionic equation; and,
 - c. List the spectator ions.

Remember that if an acid or base is **not** strong, it is written as a molecule, not as an ion.

i.
$$H_3PO_{4(aq)} + KOH_{(aq)} \rightarrow H_2O_{(1)} + K_3PO_{4(aq)}$$

ii.
$$HClO_{(aq)} + Ba(OH)_{2(aq)} \rightarrow H_2O_{(l)} + Ba(ClO)_{2(aq)}$$

iii.
$$NH_3$$
 (aq) + HCl (aq) $\rightarrow NH_4Cl$ (aq)

38. How many moles of NaOH are needed to completely neutralize 0.432 mol of H₂SO₄?

0.432 mol
$$H_2SO_4 \times \frac{2 \text{ mol NaOH}}{1 \text{ mol } H_2SO_4} = 0.864 \text{ mol NaOH}$$
39. How many moles of Ca(OH)₂ are needed to completely neutralize 0.530 mol of H_3PO_4 ?

0.530 mol H₃PO₄ x
$$\frac{3 \text{ mol } (a(OH)_2}{2 \text{ mol H3PO4}} = 0.795 \text{ mol } Ca(OH)_2$$

40. It takes 38 mL of 0.75 M NaOH solution to completely neutralize 155 mL of a sulfuric acid solution (H₂SO₄). What is the concentration of the H₂SO₄ solution? [H2SO4]= 7

$$N_{NQOH} = CV = (0.75)(0.038) = 0.0285 \text{ mol}$$

$$N_{HzSO4} = 0.0285 \text{ mol} \text{ NaOH} \times \frac{1 \text{ mol} \text{ HzSO4}}{2 \text{ mol} \text{ NaOH}} = 0.0143 \text{ mol}$$

$$= 0.0143 \text{ mol}$$

$$= 0.0143 \text{ mol}$$

$$= 0.0923 \text{ NaOH} = 0.0923 \text{ NaOH}$$

41. It takes 12.5 mL of a 0.30 M CH₃COOH solution to completely neutralize 285 mL of NaOH solution. What is the concentration of the NaOH solution?

42. It takes 50 mL of 0.500 M KOH solution to completely neutralize 125 mL of sulfuric acid solution. What is the pH of the sulfuric acid solution?

43. What is the pH of a NaOH solution if it takes 100.0 mL to neutralize 150.0 mL of 3.00 M $\rm H_2CO_3$ solution?

$$[NaOH] = 9.0 M$$
 $POH = -0.95$ $PH = 14.95$

44. Titration reveals that 11.6 mL of 3.0 M sulfuric acid are required to neutralize the sodium hydroxide in 25.00 mL of NaOH solution. What is the molarity of the NaOH solution?

45. When 34.2 mL of a 1.02 M NaOH solution is added from a buret to 25.00 mL of a phosphoric acid solution that contains phenolphthalein, the solution changes from colorless to pink. What is the molarity of the phosphoric acid?