## Acid-Base Theories

# Acid- Base Equilibrium 

AP Chemistry 30 - Ms. Hayduk

## Arrhenius

- Acids contain hydrogen
- Donate hydrogen ion in water -e.g. $\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- Bases contain hydroxide
- Donate hydroxide ion in water - e.g. $\mathrm{KOH}(\mathrm{s}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$


## Hydrogen vs. Hydronium

- Hydronium is $\mathrm{H}_{3} \mathrm{O}^{+}$- basically a hydrogen ion attached to a water molecule
- EQUIVALENT - think "Robert" vs. "Bob" (same guy, just one name is shorter)
- Acids donate a proton in water -e.g. $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$
- Bases accept a proton in water -e.g. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$


## Conjugates

- Conjugate acid-base pair: compounds that differ by one hydrogen ion
- Example:



## Example: Conjugates

Identify the conjugate acid-base pairs.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{aligned}
$$

## Worth Noting...

- Acids often, but not always, start with H they must contain hydrogen to be a B-L acid
- Acids can be cations, anions or neutral
- Bases can be anions or neutral


## Amphoteric Substances

- Amphiprotic: substances that can donate or accept a hydrogen ion
- Amphoteric: substances that can act as either an acid or a base
- All amphiprotic substances are amphoteric, but the reverse is not true
- Example: water, $\mathrm{HCO}_{3}^{-}$


## Thinking Activity

a. Identify the acid, base, conjugate acid and conjugate base:
$\mathrm{HBr}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Br}$
b. What is the conjugate base of $\mathrm{H}_{2} \mathrm{~S}$ ?
c. What is the conjugate acid of $\mathrm{NO}_{3}^{-}$?
d. How can you tell if two compounds are a conjugate acid-base pair?

## Ionization of Acids

- Only available hydrogen ions to lose are from polar bonds.
- Process is called ionization - breaking a polar bond to form two ions
- For example, in acetic acid:


Three $\mathrm{H}-\mathrm{C}$ bonds will not be broken in water, but O-H can be

## Successive Ionization

- Acids donate only one proton at a time
- Each ionization is more difficult


## Strength of Acids and Bases

- Strength of an acid or base: extent to which it dissolves in solution
- Basically, strength is an indicator of how soluble the compound is


## Strong Acids

- Affected by bond strength (lower bond strength = stronger acid, because it breaks apart more easily)

| Chle 14.7 Bond Strengths and Acid |
| :--- | :---: | :--- |
| Strengths for Hydrogen Halides |

## Strong Acids

- Dissolve $\mathbf{1 0 0 \%}$ in solution (very soluble)
- All of the non-water particles are ions
- Six strong acids - YOU MUST MEMORIZE THESE
- Hydrohalic acids $\mathrm{HCl}, \mathrm{HI}, \mathrm{HBr}$ (NOT HF)
- Nitric acid $\quad \mathrm{HNO}_{3}$
- Sulfuric acid $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$
- Perchloric acid $\quad \mathrm{HClO}_{4}$
- More oxygen within an oxyacid means the acid is stronger
- $\mathrm{HClO}_{4}$ is very strong, $\mathrm{HClO}_{3}$ is somewhat strong, and $\mathrm{HClO}_{2}$ and HClO are weak


## Strong Acids



## Strength and Conjugates

- Strong acids and bases have very weak conjugates (no reverse reaction)
- Converse is also true



## Weak Acids and Bases

- Ionize very little in solution
- Equilibrium between the compound (as a neutral molecule) and its ions
- Almost non-polar bonds (do not dissolve easily in water)
- Temperature and concentration can also affect the level of dissociation of any substance being dissolved in water

| Property | Strong Acid | Weak Acid |
| :---: | :---: | :---: |
| $K_{\mathrm{a}}$ value | $K_{\mathrm{a}}$ is large | $K_{\mathrm{a}}$ is small |
| Position of the dissociation (ionization) equilibrium | Far to the right | Far to the left |
| Equilibrium concentration of $\mathrm{H}^{+}$compared with original concentration of HA | $\left[\mathrm{H}^{+}\right] \approx[\mathrm{HA}]_{0}$ | $\left[\mathrm{H}^{+}\right]<\left[\mathrm{HA}_{0}\right.$ |
| Strength of conjugate base compared with that of water | $\mathrm{A}^{-}$much weaker base than $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{A}^{-}$much stronger base than $\mathrm{H}_{2} \mathrm{O}$ |



## Example: Ionization Equations

Write a balanced equation for the ionization of hydrochloric acid:

Write the balance equation for the first ionization of carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$ :

## Example: Ionization/Dissociation

Equations
Write a balanced equation for the dissociation of sodium hydroxide:

Write a balanced equation for the ionization of methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$ :

## Base Dissociation/Ionization

Equations

- Strong bases dissociate completely:

$$
\mathrm{BOH} \rightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

- Weak bases ionize partially, so they are in equilibrium. A weak base MUST be combined with water, to produce hydroxide ions:

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{OH}^{-}+\mathrm{HB}
$$

## Ionization Constants

- $\mathrm{K}_{\mathrm{a}}$ and $\mathrm{K}_{\mathrm{b}}$ are acid and base ionization constants
- Similar to $\mathrm{K}_{\mathrm{sp}}$ - determine how much an acid/base will ionize in solution
- Higher values mean the acid or base is stronger
- Compare strength using these values


## Example: $\mathrm{K}_{\mathrm{a}}$

Put these in order from strongest to weakest:
Formic acid
$1.8 \times 10^{-4}$
Hydrocyanic acid
$6.2 \times 10^{-10}$
Citric acid
$3.2 \times 10^{-7}$
Boric acid
$5.9 \times 10^{-10}$
Benzoic acid
$6.4 \times 10^{-5}$

## Ionization Constants

- $\mathrm{K}_{\mathrm{a}}$ and $\mathrm{K}_{\mathrm{b}}$ have equilibrium expressions
- For example, for acetic acid:

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.8 \times 10^{-5}
$$

- For polyprotic acids, there is a constant for each successive ionization


## Example 1: Strong Acids

Calculate $\left[\mathrm{H}^{+}\right]$in a 2.00 M solution of hydrochloric acid. $\mathrm{K}_{\mathrm{a}}$ for HCl is very large.

## Example 3: Weak Acids

An acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ solution is 0.25 $\mathrm{mol} / \mathrm{L}$. Given that $\mathrm{K}_{\mathrm{a}}$ for acetic acid is $1.8 \times$ $10^{-5}$, find $\left[\mathrm{H}^{+}\right]$.

## Water

- Water ionizes very slightly to produce equal hydronium and hydroxide ions
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Autoionization constant of water, $\mathrm{K}_{\mathrm{w}}$ at $25^{\circ} \mathrm{C}$ is given by:
$K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.008 \times 10^{-14}$
$K_{w}=K_{a} \times K_{b}$ for a conjugate pair


## Example 2: Strong Bases

Calculate $\left[\mathrm{OH}^{-}\right]$in a 1.50 M solution of calcium hydroxide, a strong base.

## Example 4: $\mathrm{K}_{\mathrm{b}}$ for Weak Bases

Calculate the hydroxide ion concentration in a 0.025 M solution of aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, a weak base with $\mathrm{K}_{\mathrm{b}}=4.3 \times 10^{-10}$.

## Acidity and Basicity

- If $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]$, solution is neutral
- If $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$, solution is basic
- If $\left[\mathrm{OH}^{-}\right]<\left[\mathrm{H}^{+}\right]$, solution is acidic


## Thinking Activity

At $60^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}$ is $1.0 \times 10^{-13}$.

Using Le Chatelier's Principle, determine whether the ionization of water is exothermic or endothermic.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

## pH and pOH

- Use pH to simplify concentration values (often very small numbers)
- Logarithmic scale that indicates the concentration of ions in a solution:

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
\mathrm{pH}+\mathrm{pOH}=14.00
\end{gathered}
$$

## Notes about Logs

- For a log scale, each integer represents a magnitude of 10
- A solution with pH of 3 is ten times more acidic than a solution with pH 4
- A solution with pH 3 is a hundred times more than pH 5
- Significant digits with logs - write as many decimal places on pH as there are in the least accurate measurement you are given


## Example: $\mathrm{K}_{\mathrm{w}}$

In a solution, $\left[\mathrm{H}^{+}\right]=3.82 \times 10^{-11} \mathrm{M}$. What is [ $\mathrm{OH}^{-}$] in the solution? Is the solution neutral, basic or acidic?

## pH and pOH

- pH Ranges:

Acids $\mathrm{pH}<7$
Neutral $\mathrm{pH}=7$
Bases pH $>7$

- It is a myth that pH must fall between 0 and 14 - can be outside of that range for concentrated acids and bases


## pH to Concentration

To calculate the concentration from pH or pOH :

$$
\begin{aligned}
{\left[H^{+}\right] } & =10^{-p H} \\
{\left[O H^{-}\right] } & =10^{-p O H}
\end{aligned}
$$

## Example 1: pH

A solution at $25^{\circ} \mathrm{C}$ has a pH of 8.22 . Calculate $\mathrm{pOH},\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for the solution.

## Example 3: pH

What is the pH of a $2.6 \times 10^{-5} \mathrm{M}$ barium hydroxide solution?

## Example 2: pH

For a $0.15 \mathrm{~mol} / \mathrm{L}$ solution of hydrobromic acid, what is the pH of the solution?

## pH of Weak Acid Solutions

- To solve:
- Balanced equation
- $\mathrm{K}_{\mathrm{a}}$ expression
- ICE table
- Solve for $x$


## Example 1: pH of a Weak Acid

Calculate the pH of a $1.00 \times 10^{-6} \mathrm{M}$ solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. The $\mathrm{K}_{\mathrm{a}}$ of acetic acid is $1.8 \times 10^{-5}$.

## Neglecting $x$

- Sometimes the $-x$ in the denominator can be considered negligible
- Look at the original concentration and compare it to $100 \mathrm{~K}_{\mathrm{a}}$ (or $100 \mathrm{~K}_{\mathrm{b}}$ )
- If the initial concentration is larger than $100 \mathrm{~K}_{\mathrm{a}}$, then the $x$ in the denominator is negligible
- In the previous example, $100 \mathrm{~K}_{\mathrm{a}}$ is too close to the initial $C$ to neglect $-x$


## Example 2: pH of a Weak Acid

Calculate the pH of a 1.10 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. The $\mathrm{K}_{\mathrm{a}}$ of acetic acid is $1.8 \times 10^{-5}$.

## Weak Acid Mixtures

- Only the acid with the largest $\mathrm{K}_{\mathrm{a}}$ will contribute a significant amount of $\mathrm{H}^{+}$
- Determine the pH based on this acid and ignore any other


## Percent Ionization

- How ionized the weak acid or base is
- Given by:

$$
\%=\frac{[x]}{[C]_{o}} \times 100
$$

Where $x$ is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$

## Example 2: Percent Ionization

In a 0.125 M aqueous solution of nitrous acid $\left(\mathrm{HNO}_{2}\right), 6.5 \%$ is ionized. Calculate $\mathrm{K}_{\mathrm{a}}$ for this acid.

## pH of Weak Bases

- Remember:
- Ionization equation must include $\mathrm{H}_{2} \mathrm{O}$
- The value for $x$ will be $\left[\mathrm{OH}^{-}\right]$, and the negative log will give you pOH


## pH for Polyprotic Acids

- Remember: ionization will occur in steps
- First ionization will be the greatest, and subsequent will produce fewer and fewer hydrogen ions (more difficult to remove the proton)
- EXCEPT sulfuric acid, $2^{\text {nd }}$ and $3^{\text {rd }}$ ionization can be considered negligible


## Example: pH of Weak Bases

For a $0.00675 \mathrm{~mol} / \mathrm{L}$ solution of aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{~K}_{\mathrm{b}}$ is $4.2 \times 10^{-10}$. What is the pH of the solution?

## Example: pH of a Polyprotic Acid

Calculate the pH of a $5.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution and the equilibrium concentrations of $\mathrm{H}_{3} \mathrm{PO}_{4}$, $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}, \mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{PO}_{4}{ }^{3-}$.

| Formula | $K_{a_{1}}$ | $K_{a_{2}}$ | $K_{a_{3}}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}_{3} \mathrm{PO}_{4}$ | $7.5 \times 10^{-3}$ | $6.2 \times 10^{-8}$ | $4.8 \times 10^{-13}$ |

## Sulfuric Acid

- Special case, since first ionization is strong
- For concentrations over 1.0 M , ignore the second ionization
- If the concentration is less than 1.0 M, then the second ionization is not negligible (need a quadratic to solve)


## Acid-Base Properties of Salts

- Salts are produced during acid-base reactions
- Not always neutral - some will react with water to produce acidic or basic solutions


## Neutral Salts

- Produced from a strong acid reacted with a strong base
- Example: $\mathrm{NaNO}_{3}$
- Which acid and base reacted to produce this salt?
-NaOH (strong base) and $\mathrm{HNO}_{3}$ (strong acid)


## Acidic Salts

- Formed from the cation of a weak base and the anion of a strong acid
- Cation will react (hydrolyze) with water to produce a weak base and $\mathrm{H}_{3} \mathrm{O}^{+}$(strong acid)
- Example: $\mathrm{NH}_{4} \mathrm{Cl}\left(\mathrm{NH}_{3}+\mathrm{HCl}\right)$
$-\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$


## Steps to Solve

1. Which acid and base reacted to form the salt?
2. Are those acids strong or weak?
3. Strong wins

- strong acid = acidic salt, write $\leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}$
- strong base = basic salt, write $\leftrightharpoons \mathrm{OH}^{-}$

4. Strong is a spectator - use remaining ion of salt with water as reactants
5. Other product is original weak acid/base

## Basic Salts

- Formed from the cation of a strong base and the anion of a weak acid
- Anion will react (hydrolyze) with water to produce a weak acid and $\mathrm{OH}^{-}$(strong base)
- Example: $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\left(\mathrm{KOH}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ $-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{OH}^{-}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$


## Weak Acids + Weak Bases

- If a weak acid and weak base are combined, determine which has a larger K value ( $\mathrm{K}_{\mathrm{a}}$ or $\mathrm{K}_{\mathrm{b}}$ )
- The value that is higher determines the pH of the salt solution
Ialle 1a,s Qualitative Predic-
fion of pH for Solutions of
Salts for Which Both Cotion
and Anion Have Acidic or
Basic Properties

| $K_{\mathrm{a}}>K_{\mathrm{b}}$ | $\mathrm{pH}<7$ (acidic) |
| :--- | :--- |
| $K_{\mathrm{b}}>K_{\mathrm{a}}$ | $\mathrm{pH}>7$ (basic) |
| $K_{\mathrm{a}}=K_{\mathrm{b}}$ | $\mathrm{pH}=7$ (neutral) |

## Example 1: pH of Salts

What is the qualitative pH of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ ?

1. Which acid reacted? Strong or weak?
2. Which base reacted? Strong or weak?
3. Which "wins"? Write $\mathrm{H}_{2} \mathrm{O} \leftrightharpoons$ $\qquad$
4. Add "weak" ion and original weak acid/base

## Thinking Activity

Determine whether the following salts will form acidic, basic or neutral solutions.

## Example 2: pH of Salts

Calculate the pH of a 0.30 M NaF solution.
$\mathrm{K}_{\mathrm{a}}$ for HF is $7.2 \times 10^{-4}$.

## Example 3: pH of Salts

Calculate the pH of a $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution.
$\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_{3}$ is $1.8 \times 10^{-5}$.

